Skip to main content

Supporting Web-Based Visual Exploration of Large-Scale Raster Geospatial Data Using Binned Min-Max Quadtree

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6187))

Abstract

Traditionally environmental scientists are limited to simple display and animation of large-scale raster geospatial data derived from remote sensing instrumentation and model simulation outputs. Identifying regions that satisfy certain range criteria, e.g., temperature between [t1,t2) and precipitation between [p1,p2), plays an important role in query-driven visualization and visual exploration in general. In this study, we have proposed a Binned Min-Max Quadtree (BMMQ-Tree) to index large-scale numeric raster geospatial data and efficiently process queries on identifying regions of interests by taking advantages of the approximate nature of visualization related queries. We have also developed an end-to-end system that allows users visually and interactively explore large-scale raster geospatial data in a Web-based environment by integrating our query processing backend and a commercial Web-based Geographical Information System (Web-GIS). Experiments using real global environmental data have demonstrated the efficiency of the proposed BMMQ-Tree. Both experiences and lessons learnt from the development of the prototype system and experiments on the real dataset are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, Y.K., Bretschneider, T.R.: Semantic-sensitive satellite image retrieval. IEEE Transactions on Geoscience and Remote Sensing 45(4), 853–860 (2007)

    Article  Google Scholar 

  2. USGS: Modis product table, https://lpdaac.usgs.gov/lpdaac/products/modis_products_table

  3. WRF: Weather research and forecast, http://www.wrf-model.org

  4. UCAR Unidata: Unidata integrated data viewer (idv), http://www.unidata.ucar.edu/software/idv/

  5. NASA: Worldwind, http://worldwind.arc.nasa.gov/java/

  6. Kothuri, R.K.V., Ravada, S., Abugov, D.: Quadtree and r-tree indexes in oracle spatial: a comparison using gis data. In: SIGMOD 2002, pp. 546–557 (2002)

    Google Scholar 

  7. Fang, Y., Friedman, M., Nair, G., Rys, M., Schmid, A.E.: Spatial indexing in microsoft sql server 2008. In: SIGMOD 2008, pp. 1207–1216 (2008)

    Google Scholar 

  8. Oracle: Georaster, http://download.oracle.com/docs/html/B10827-01/geor-intro.htm

  9. ESRI: Arcgis server, http://www.esri.com/software/arcgis/arcgisserver

  10. MapServer: Mapserver open source mapping, http://mapserver.org/

  11. TileCache: Tilecache - web map tile caching, http://tilecache.org/

  12. Wu, K., Koegler, W., Chen, J., Shoshani, A.: Using bitmap index for interactive exploration of large datasets. In: SSDBM 2003, pp. 65–74 (2003)

    Google Scholar 

  13. Stockinger, K., Shalf, J., Wu, K., Bethel, E.W.: Query-driven visualization of large data sets. In: IEEE Visualization, p. 22 (2005)

    Google Scholar 

  14. Glatter, M., Mollenhour, C., Huang, J., Gao, J.Z.: Scalable data servers for large multivariate volume visualization. IEEE TVCG 12(5), 1291–1298 (2006)

    Google Scholar 

  15. Kendall, W., Glatter, M., Huang, J., Peterka, T., Latham, R., Ross, R.: Terascale data organization for discovering multivariate climatic trends. In: Bergel, A., Fabry, J. (eds.) SC 2009. LNCS, vol. 5634, pp. 1–12. Springer, Heidelberg (2009)

    Google Scholar 

  16. Fuchs, R., Hauser, H.: Visualization of multi-variate scientific data. Computer Graphics Forum 28(6), 1670–1690 (2009)

    Article  Google Scholar 

  17. Lawrence Berkeley National Laboratory: Fastbit, https://sdm.lbl.gov/fastbit/

  18. Sinha, R.R., Winslett, M., Wu, K.: Finding regions of interest in large scientific datasets. In: SSDBM 2009, pp. 130–147 (2009)

    Google Scholar 

  19. Maceachren, A.M., Wachowicz, M., Edsall, R., Haug, D., Masters, R.: Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. International Journal of Geographical Information Science 13(4), 311–334 (1999)

    Article  Google Scholar 

  20. Andrienko, N., Andrienko, G., Gatalsky, P.: Exploratory spatio-temporal visualization: an analytical review. Journal of Visual Languages and Computing 14(6), 503–541 (2003)

    Article  Google Scholar 

  21. Guo, D.S., Chen, J., MacEachren, A.M., Liao, K.: A visualization system for space-time and multivariate patterns (vis-stamp). IEEE TVCG 12(6), 1461–1474 (2006)

    Google Scholar 

  22. Anselin, L., Syabri, I., Kho, Y.: Geoda: An introduction to spatial data analysis. Geographical Analysis 38(1), 5–22 (2006)

    Article  Google Scholar 

  23. Gahegan, M., Takatsuka, M., Wheeler, M., Hardisty, F.: Introducing geovista studio: an integrated suite of visualization and computational methods for exploration and knowledge construction in geography. Computers, Environment and Urban Systems 26(4), 267–292 (2002)

    Article  Google Scholar 

  24. Rushing, J., Ramachandran, R., Nair, U., Graves, S., Welch, R., Lin, H.: Adam: a data mining toolkit for scientists and engineers. Computers & Geosciences 31(5), 607–618 (2005)

    Article  Google Scholar 

  25. Zhang, J.T., Gruenwald, L., Gertz, M.: Vdm-rs: A visual data mining system for exploring and classifying remotely sensed images. Computers & Geosciences 35(9), 1827–1836 (2009)

    Article  Google Scholar 

  26. Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M.: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information. ISPRS Journal of Photogrammetry and Remote Sensing 58(3-4), 239–258 (2004)

    Article  Google Scholar 

  27. Liu, Y., Guo, Q.H., Kelly, M.: A framework of region-based spatial relations for non-overlapping features and its application in object based image analysis. ISPRS Journal of Photogrammetry and Remote Sensing 63(4), 461–475 (2008)

    Article  Google Scholar 

  28. Goodchild, M.F., Yuan, M., Cova, T.J.: Towards a general theory of geographic representation in gis. Int. J. of Geographical Information Science 21(3), 239–260 (2007)

    Article  Google Scholar 

  29. Cohen, S., Hurley, P., Schulz, K.W., Barth, W.L., Benton, B.: Scientific formats for object-relational database systems: a study of suitability and performance. SIGMOD Rec. 35(2), 10–15 (2006)

    Article  Google Scholar 

  30. Stancu-Mara, S., Baumann, P.: A comparative benchmark of large objects in relational databases. In: IDEAS 2008, pp. 277–284 (2008)

    Google Scholar 

  31. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how different are they really? In: SIGMOD 2008 (2008)

    Google Scholar 

  32. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: SIGMOD 2009, pp. 165–178 (2009)

    Google Scholar 

  33. UCAR Unidata: Netcdf, http://www.unidata.ucar.edu/software/netcdf/

  34. The HDF Group: Hdf5, http://www.hdfgroup.org/HDF5/

  35. Baumann, P., Furtado, P., Ritsch, R., Widmann, N.: The rasdaman approach to multidimensional database management. In: SAC 1997, pp. 166–173 (1997)

    Google Scholar 

  36. Marathe, A.P., Salem, K.: Query processing techniques for arrays. The VLDB Journal 11(1), 68–91 (2002)

    Article  Google Scholar 

  37. Baumann, P.: Designing a geo-scientific request language - a database approach. In: SSDBM 2009 (2009)

    Google Scholar 

  38. Sarawagi, S., Stonebraker, M.: Efficient organization of large multidimensional arrays. In: ICDE 1994, pp. 328–336 (1994)

    Google Scholar 

  39. Otoo, E.J., Rotem, D.: Efficient storage allocation of large-scale extendible multi-dimensional scientific datasets. In: SSDBM 2006, pp. 179–183 (2006)

    Google Scholar 

  40. Kim, J., JaJa, J.: Component-based data layout for efficient slicing of very large multidimensional volumetric data. In: SSDBM 2007, p. 8 (2007)

    Google Scholar 

  41. Gaede, V., Gunther, O.: Multidimensional access methods. ACM Computing Surveys 30(2), 170–231 (1998)

    Article  Google Scholar 

  42. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  43. Cignoni, P., Marino, P., Montani, C., Puppo, E., Scopigno, R.: Speeding up isosurface extraction using interval trees. IEEE TVCG 3(2), 158–170 (1997)

    Google Scholar 

  44. Wilhelms, J., Vangelder, A.: Octrees for faster isosurface generation. ACM Transactions on Graphics 11(3), 201–227 (1992)

    Article  MATH  Google Scholar 

  45. Wang, C., Chiang, Y.J.: Isosurface extraction and view-dependent filtering from time-varying fields using persistent time-octree (ptot). IEEE TVCG 15(6), 1367–1374 (2009)

    Google Scholar 

  46. Gress, A., Klein, R.: Efficient representation and extraction of 2-manifold isosurfaces using kd-trees. Graphical Models 66(6), 370–397 (2004)

    Article  Google Scholar 

  47. Hughes, D.M., Lim, I.S.: Kd-jump: a path-preserving stackless traversal for faster isosurface raytracing on gpus. IEEE TVCG 15(6), 1555–1562 (2009)

    Google Scholar 

  48. Lin, T.W.: Compressed quadtree representations for storing similar images. Image and Vision Computing 15(11), 833–843 (1997)

    Article  Google Scholar 

  49. Chan, Y.K., Chang, C.C.: Block image retrieval based on a compressed linear quadtree. Image and Vision Computing 22(5), 391–397 (2004)

    Article  Google Scholar 

  50. Chung, K.L., Liu, Y.W., Yan, W.M.: A hybrid gray image representation using spatial- and dct-based approach with application to moment computation. Journal of Visual Communication and Image Representation 17(6), 1209–1226 (2006)

    Article  Google Scholar 

  51. Vassilakopoulos, M., Manolopoulos, Y., Economou, K.: Overlapping quadtrees for the representation of similar images. Image and Vision Computing 11(5), 257–262 (1993)

    Article  Google Scholar 

  52. Manolopoulos, Y., Nardelli, E., Papadopoulos, A., Proietti, G.: Mof-tree: a spatial access method to manipulate multiple overlapping features. Inf. Syst. 22(9), 465–481 (1997)

    Article  Google Scholar 

  53. Nardelli, E., Proietti, G.: An efficient spatial access method for spatial images containing multiple non-overlapping features. Information Systems 25(8), 553–568 (2000)

    Article  MATH  Google Scholar 

  54. Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: On the generation of time-evolving regional data. Geoinformatica 6(3), 207–231 (2002)

    Article  MATH  Google Scholar 

  55. Manolopoulos, Y., Nardelli, E., Proietti, G., Tousidou, E.: A generalized comparison of linear representations of thematic layers. Data & Knowledge Engineering 37(1), 1–23 (2001)

    Article  MATH  Google Scholar 

  56. Manouvrier, M., Rukoz, M., Jomier, G.: Quadtree representations for storage and manipulation of clusters of images. Image and Vision Computing 20(7), 513–527 (2002)

    Article  Google Scholar 

  57. Wu, K., Stockinger, K., Shoshani, A.: Breaking the curse of cardinality on bitmap indexes. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 348–365. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  58. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans. Database Syst. 32(3), 16 (2007)

    Article  Google Scholar 

  59. Rubel, O., Wu, K., et al.: High performance multivariate visual data exploration for extremely large data. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 1–12. Springer, Heidelberg (2008)

    Google Scholar 

  60. Gosink, L.J., Anderson, J.C., Bethel, E.W., Joy, K.I.: Query-driven visualization of time-varying adaptive mesh refinement data. IEEE TVCG 14(6), 1715–1722 (2008)

    Google Scholar 

  61. Wood, J., Dykes, J., Slingsby, A., Clarke, K.: Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup. IEEE TVCG 13(6), 1176–1183 (2007)

    Google Scholar 

  62. Dork, M., Carpendale, S., Collins, C., Williamson, C.: Visgets: Coordinated visualizations for web-based information exploration and discovery. IEEE TVCG 14(6), 1205–1212 (2008)

    Google Scholar 

  63. Tobler, W.: A computer model simulating urban growth in the detroit region. Economic Geography 46(2), 234–240 (1970)

    Article  Google Scholar 

  64. GDAL: Geospatial data abstraction library, http://www.gdal.org/

  65. Adobe: Adobe flex api, http://www.adobe.com/products/flex/

  66. ESRI: Arcgis flex api, http://www.adobe.com/products/flex/

  67. University of Maryland: Global land cover facility (glcf), ftp://ftp.glcf.umiacs.umd.edu/modis/500m/

  68. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15), 1965–1978 (2005)

    Article  Google Scholar 

  69. WorldClim: Worldclim current conditions data 1950-2000, http://www.worldclim.org/current

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., You, S. (2010). Supporting Web-Based Visual Exploration of Large-Scale Raster Geospatial Data Using Binned Min-Max Quadtree. In: Gertz, M., Ludäscher, B. (eds) Scientific and Statistical Database Management. SSDBM 2010. Lecture Notes in Computer Science, vol 6187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13818-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13818-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13817-1

  • Online ISBN: 978-3-642-13818-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics