Skip to main content

On Compactness and Consistency in Finite Lattice-Valued Propositional Logic

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6077))

Included in the following conference series:

Abstract

In this paper, we investigate the semantical theory of finite lattice-valued propositional logic based on finite lattice implication algebras. Based on the fuzzy set theory on a set of formulas, some propositions analogous to those in the classical logic are proved, and using the semantical consequence operation, the consistence and compactness is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bělohlávek, R.: Fuzzy closure operators. Journal of Mathematical Analysis and Applications 262, 473–489 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bělohlávek, R.: Fuzzy closure operators II: induced relations, representation, and examples. Soft computing 7, 53–64 (2002)

    Article  MATH  Google Scholar 

  3. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, New York (2002)

    MATH  Google Scholar 

  4. Biacino, L., Gerla, G.: An extension principle for closure operators. Journal of Mathematical analysis and applications 198, 1–24 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biacino, L., Gerla, G.: Closure Operators for Fuzzy Subsets. In: Proceeds First European Congress on Fuzzy and Intelligent Technologies, Aachen (1993)

    Google Scholar 

  6. Castro, J.L., Trillas, E.: Tarski’s fuzzy consequences. In: Proc. Internat. Fuzzy Eng. Symp. 1991, vol. 1, pp. 70–81 (1991)

    Google Scholar 

  7. Castro, J.L., Trillas, E., Cubillo, S.: On consequence in approximate reasoning. J. Appl. Non-Classical Logics 4(1), 91–103 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Cintula, P.: From fuzzy logic to fuzzy mathematics. Ph.D.Thesis, Czech Technical University, Prague (2005)

    Google Scholar 

  9. Gerla, G.: Comparing fuzzy and crisp deduction systems. Fuzzy Sets and Systems 67, 317–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  11. Ma, J., Li, W., Ruan, D., Xu, Y.: Filter-based resolution principle for lattice-valued propositional logic LP(X). Information Sci. 177, 1046–1062 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ma, J., Chen, S., Xu, Y.: Fuzzy logic from the viewpoint of machine intelligence. Fuzzy Sets Syst. 157, 628–634 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Michálek, J.: Fuzzy Topologies. Kibernetika II 5, 345–354 (1975)

    Google Scholar 

  14. Pavelka, J.: On fuzzy logic I: Many-valued rules of inference, II: Enriched residuated lattices and semantics of propositional calculi, III: Semantical Conpleteness of some many-valued propositional calculi. Zeitschr. F. Math. Logik. Und. Grundlagend Math. 25, 45–52 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)

    MATH  Google Scholar 

  16. Novák, V.: Which logic is the real fuzzy logic? Fuzzy Sets and Systems 157, 635–641 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Novák, V.: On the syntactico-semantical completeness of first-order fuzzy logic. Part I, syntax and semantics, Kybernetika 26, 47–66 (1990)

    MATH  Google Scholar 

  18. Novák, V.: On the syntactico-semantical completeness of first-order fuzzy logic. Part II, main results, Kybernetika 26, 134–154 (1990)

    MATH  Google Scholar 

  19. Tarski, A.: Logic, Semantics and Metamathematics. Clarendon Press, Oxford (1956)

    Google Scholar 

  20. Turunen, E.: Mathematics behind fuzzy logic. In: Advances in Soft Computing. Physica-Verlag, Heidelberg (1999)

    Google Scholar 

  21. Wang, G.J., Zhang, W.X.: Consistency degrees of finite theories in£ukasiewicz propositional fuzzy logic. Fuzzy Sets and Systems 149, 275–284 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu, Y., Ruan, D., Qin, K.Y., Liu, J.: Lattice-Valued Logic-An Alternative Approach to Treat Fuzziness and Incomparability. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  23. Xu, Y., Ruan, D., Kerre, E.E., Liu, J.: α-Resolution principle based on lattice-valued propositional logic LP(X). Information Sci. 130, 1–29 (2000)

    Article  MathSciNet  Google Scholar 

  24. Xu, Y., Ruan, D., Kerre, E.E., Liu, J.: α-Resolution principle based on first-order lattice-valued logic LF(X). Information Sci. 132, 221–239 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, Y., Liu, J., Ruan, D.: Tsu-Tian Lee: On the consistency of Rule Bases Based on lattice-valued first-order logic LF(X). Internat. J. Intelligent Systems 21, 399–424 (2006)

    Article  MATH  Google Scholar 

  26. Zhou, X.N., Wang, G.J.: Consistency degrees of theories in some systems of propositional fuzzy logic. Fuzzy Sets and Systems 152, 321–331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, H.J., Wang, G.J.: Generalized consistency degrees of theories w.r.t. formulas in several standard complete logic systems. Fuzzy Sets and Systems 157, 2058–2073 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhou, H.J., Wang, G.J.: Characterizations of maximal consistent theories in the formal deductive system \(\mathcal{L}*\) (NM-logic) and Cantor space. Fuzzy Sets and Systems 158, 2591–2604 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, X., Xu, Y., Martinez, L., Ruan, D., Liu, J. (2010). On Compactness and Consistency in Finite Lattice-Valued Propositional Logic. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13803-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13803-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13802-7

  • Online ISBN: 978-3-642-13803-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics