Skip to main content

Improving Accuracy of Optical Flow of Heeger’s Original Method on Biomedical Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Abstract

The paper is focused on the computation of optical flow from time-lapse 2D images acquired from fluorescence optical microscope. The Heeger’s traditional established method based on spatio-temporal filtering is adopted and modified in order to solve issues that arose from this sort of image data. In particular, a scheme for effective and fast computations of complex Gabor convolutions is used. The filter tuning is changed to better support the detection of movement. The least squares fitting of the original method is also revised. A parametric study was conducted to assess optimal parameters. With optimal parameters, the proposed method showed lower average angular errors than the original. C++ implementation is available on the author’s web pages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  2. Bernardino, A., Santos-Victor, J.: Fast iir isotropic 2-d complex gabor filters with boundary initialization. IEEE Transactions on Image Processing 15(11), 3338–3348 (2006)

    Article  Google Scholar 

  3. Clocksin, W.: A new method for computing optical flow. In: BMVC 2000 (2000)

    Google Scholar 

  4. Eils, R., Athale, C.: Computational imaging in cell biology. The Journal of Cell Biology 161, 447–481 (2003)

    Article  Google Scholar 

  5. Felsberg, M.: Optical flow estimation from monogenic phase. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 1–13. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vision 5(1), 77–104 (1990)

    Article  Google Scholar 

  7. Gautama, T., Hulle, M.V.: A phase-based approach to the estimation of the optical flow field using spatial filtering. IEEE Trans. Neural Networks 13(5), 1127–1136 (2002)

    Article  Google Scholar 

  8. Gerlich, D., Mattes, J., Eils, R.: Quantitative motion analysis and visualization of cellular structures. Methods 29(1), 3–13 (2003)

    Article  Google Scholar 

  9. Heeger, D.J.: Model for the extraction of image flow. J. Opt. Soc. Am. A 4(8), 1455–1471 (1987)

    Article  Google Scholar 

  10. Heeger, D.J.: Optical flow using spatiotemporal filters. International Journal of Computer Vision 1(4), 279–302 (1988)

    Article  Google Scholar 

  11. Hubený, J., Ulman, V., Matula, P.: Estimating large local motion in live-cell imaging using variational optical flow. In: VISAPP: Proc. of the Second International Conference on Computer Vision Theory and Applications, pp. 542–548. INSTICC - Institute for Systems and Technologies of Information, Control and Communication (2007)

    Google Scholar 

  12. Jähne, B.: Motion determination in space-time images. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 161–173. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  13. Lampert, C., Wirjadi, O.: An optimal nonorthogonal separation of the anisotropic gaussian convolution filter. IEEE Transactions on Image Processing 15(11), 3501–3513 (2006)

    Article  MathSciNet  Google Scholar 

  14. Otero, A.: Robust optical flow estimation. In: ICIIS 1999: Proceedings of the 1999 International Conference on Information Intelligence and Systems, p. 370. IEEE Computer Society, Los Alamitos (1999)

    Chapter  Google Scholar 

  15. Ulman, V.: Arbitrarily-oriented anisotropic 3d gaussian filtering computed with 1d convolutions without interpolation. In: ISCGAV 2008: Proc. of the 8th Conf. on Signal Processing, Computational Geometry and Artificial Vision, pp. 56–62. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2008)

    Google Scholar 

  16. Ulman, V.: Filtering with anisotropic 3d gabor filter bank efficiently computed with 1d convolutions without interpolation. In: SPPRA 2010: Proc. of the 7th IASTED Int. Conf. on Signal Processing, Pattern Recognition, and Applications, pp. 33–42. ACTA Press (2010)

    Google Scholar 

  17. Ulman, V., Hubený, J.: Pseudo-real image sequence generator for optical flow computations. In: Scandinavian Conference on Image Analysis (June 2007)

    Google Scholar 

  18. Weber, J., Malik, J.: Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vision 14(1), 67–81 (1995)

    Article  Google Scholar 

  19. Young, I., van Vliet, L., van Ginkel, M.: Recursive gabor filtering. Signal processing 50(11), 2798–2805 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ulman, V. (2010). Improving Accuracy of Optical Flow of Heeger’s Original Method on Biomedical Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics