Skip to main content

Polynomial Kernels for Hard Problems on Disk Graphs

  • Conference paper
Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

Kernelization is a powerful tool to obtain fixed-parameter tractable algorithms. Recent breakthroughs show that many graph problems admit small polynomial kernels when restricted to sparse graph classes such as planar graphs, bounded-genus graphs or H-minor-free graphs. We consider the intersection graphs of (unit) disks in the plane, which can be arbitrarily dense but do exhibit some geometric structure. We give the first kernelization results on these dense graph classes. Connected Vertex Cover has a kernel with 12k vertices on unit-disk graphs and with 3k 2 + 7k vertices on disk graphs with arbitrary radii. Red-Blue Dominating Set parameterized by the size of the smallest color class has a linear-vertex kernel on planar graphs, a quadratic-vertex kernel on unit-disk graphs and a quartic-vertex kernel on disk graphs. Finally we prove that H -Matching on unit-disk graphs has a linear-vertex kernel for every fixed graph H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downey, R., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  2. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38, 31–45 (2007)

    Article  Google Scholar 

  3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Proc. 34th ICALP, pp. 375–386 (2007)

    Google Scholar 

  5. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: Proc. 50th FOCS, pp. 629–638 (2009)

    Google Scholar 

  6. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proc. 21st SODA, pp. 503–510 (2010)

    Google Scholar 

  7. van Leeuwen, E.J.: Optimization and Approximation on Systems of Geometric Objects. PhD thesis, CWI Amsterdam (2009)

    Google Scholar 

  8. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics 86, 165–177 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Marx, D.: Efficient approximation schemes for geometric problems? In: Proc. 13th ESA, pp. 448–459 (2005)

    Google Scholar 

  10. Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Proc. 2nd IWPEC, pp. 154–165 (2006)

    Google Scholar 

  11. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52, 134–151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs: Fpt algorithms and polynomial kernels. In: Proc. 17th ESA, pp. 694–705 (2009)

    Google Scholar 

  13. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids. In: Proc. 36th ICALP, pp. 378–389 (2009)

    Google Scholar 

  14. Marathe, M., Breu, H., Iii, H.B.H., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25, 59–68 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wiese, A., Kranakis, E.: Local PTAS for independent set and vertex cover in location aware unit disk graphs. In: Proc. 4th DCOSS, pp. 415–431 (2008)

    Google Scholar 

  16. Kratochvíl, J., Pergel, M.: Intersection graphs of homothetic polygons. Electronic Notes in Discrete Mathematics 31, 277–280 (2008)

    Google Scholar 

  17. Moser, H.: A problem kernelization for graph packing. In: Proc. 35th SOFSEM, pp. 401–412 (2009)

    Google Scholar 

  18. Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms 26, 238–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings 25th SCG, pp. 333–340 (2009)

    Google Scholar 

  20. Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k-enclosing circle and related problems. Comput. Geom. 4, 119–136 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. de Berg, M., Speckmann, B.: Computational geometry: Fundamental structures. In: Handbook of Data Structures and Applications, pp. 62.1–62.20 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, B. (2010). Polynomial Kernels for Hard Problems on Disk Graphs. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics