Skip to main content

Optimal Exploration of Terrains with Obstacles

  • Conference paper
Book cover Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

A mobile robot represented by a point moving in the plane has to explore an unknown flat terrain with impassable obstacles. Both the terrain and the obstacles are modeled as arbitrary polygons. We consider two scenarios: the unlimited vision, when the robot situated at a point p of the terrain explores (sees) all points q of the terrain for which the segment pq belongs to the terrain, and the limited vision, when we require additionally that the distance between p and q be at most 1. All points of the terrain (except obstacles) have to be explored and the performance of an exploration algorithm, called its complexity, is measured by the length of the trajectory of the robot.

For unlimited vision we show an exploration algorithm with complexity \(O(P+D\sqrt{k})\), where P is the total perimeter of the terrain (including perimeters of obstacles), D is the diameter of the convex hull of the terrain, and k is the number of obstacles. We do not assume knowledge of these parameters. We also prove a matching lower bound showing that the above complexity is optimal, even if the terrain is known to the robot. For limited vision we show exploration algorithms with complexity \(O(P+A+\sqrt{Ak})\), where A is the area of the terrain (excluding obstacles). Our algorithms work either for arbitrary terrains, if one of the parameters A or k is known, or for c-fat terrains, where c is any constant (unknown to the robot) and no additional knowledge is assumed. (A terrain \({\mathcal T}\) with obstacles is c-fat if R/r ≤ c, where R is the radius of the smallest disc containing \({\mathcal T}\) and r is the radius of the largest disc contained in \({\mathcal T}\).) We also prove a matching lower bound \(\Omega(P+A+\sqrt{Ak})\) on the complexity of exploration for limited vision, even if the terrain is known to the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32, 123–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandyopadhyay, T., Liu, Z., Ang, M.H., Seah, W.K.G.: Visibility-based exploration in unknown environment containing structured obstacles. Advanced Robotics, 484–491 (2005)

    Google Scholar 

  3. Bar-Eli, E., Berman, P., Fiat, A., Yan, R.: On-line navigation in a room. Journal of Algorithms 17, 319–341 (1994)

    Article  MathSciNet  Google Scholar 

  4. Berman, P., Blum, A., Fiat, A., Karloff, H., Rosen, A., Saks, M.: Randomized robot navigation algorithms. In: Proc. 7th ACM-SIAM Symp. on Discrete Algorithms, pp. 74–84 (1996)

    Google Scholar 

  5. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM Journal on Computing 26, 110–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cuperlier, N., Quoy, M., Giovanangelli, C.: Navigation and planning in an unknown environment using vision and a cognitive map. In: Proc. Workshop: Reasoning with Uncertainty in Robotics, pp. 48–53 (2005)

    Google Scholar 

  7. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment. In: Proc. 32nd Symp. on Foundations of Comp. Sci. (FOCS 1991), pp. 298–303 (1991)

    Google Scholar 

  8. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment I: the rectilinear case. Journal of the ACM 45, 215–245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. In: Proc. Int. Conf. of Robotics and Automaton (ICRA 2001), pp. 1927–1933 (2001)

    Google Scholar 

  10. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile robot. Computational Geometry: Theory and Applications 24(3), 197–224 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Ghosh, S.K., Burdick, J.W., Bhattacharya, A., Sarkar, S.: Online algorithms with discrete visibility - exploring unknown polygonal environments. Robotics & Automation Magazine 15, 67–76 (2008)

    Article  Google Scholar 

  12. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31, 577–600 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring an unknown cellular environment. In: Abstracts of the 16th European Workshop on Computational Geometry, pp. 140–143 (2000)

    Google Scholar 

  14. Kolenderska, A., Kosowski, A., Małafiejski, M., Żyliński, P.: An Improved Strategy for Exploring a Grid Polygon. In: SIROCCO, pp. 222–236 (2009)

    Google Scholar 

  15. Kalyanasundaram, B., Pruhs, K.: A Competitive Analysis of Algorithms for Searching Unknown Scenes. Comput. Geom. 3, 139–155 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. Theory Appl. 1, 149–170 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Osserman, R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182–1238 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84, 127–150 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sim, R., Little, J.J.: Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters. Intelligent Robots and Systems, 2082–2089 (2006)

    Google Scholar 

  20. Tovar, B., Murrieta-Cid, R., Lavalle, S.M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Transactions on Robotics 23, 506–518 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A. (2010). Optimal Exploration of Terrains with Obstacles. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics