Detection of Circular Arcs in a Digital Image Using Chord and Sagitta Properties

  • Sahadev Bera
  • Partha Bhowmick
  • Bhargab B. Bhattacharya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6020)


This paper presents a new technique for detection of digital circles and circular arcs using chord property and sagitta property. It is shown how a variant of the chord property of an Euclidean circle can be used to detect a digital circle or a circular arc. Based on this property, digital circular arcs are first extracted and then using the sagitta property, their centers and radii are computed. Several arcs are merged together to form a complete digital circle or a larger arc. Finally, a technique based on Hough transform is used to improve the accuracy of computing the centers and radii. Experimental results have been furnished to demonstrate the efficiency of the proposed method.


Circle detection Chord property Digital geometry Sagitta property Hough transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. PAMI 29(9), 1590–1602 (2007)Google Scholar
  2. 2.
    Chen, T.C., Chung, K.L.: An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding 83(2), 172–191 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chiu, S.H., Liaw, J.J.: An effective voting method for circle detection. Pattern Recognition Letters 26(2), 121–133 (2005)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., et al.: An elementary algorithm for digital arc segmentation. Discrete Applied Mathematics 139, 31–50 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Davies, E.R.: A modified Hough scheme for general circle location. PR 7(1), 37–43 (1984)Google Scholar
  6. 6.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)Google Scholar
  7. 7.
    Ho, C.T., Chen, L.H.: A fast ellipse/circle detector using geometric symmetry. Pattern Recognition 28(1), 117–124 (1995)CrossRefGoogle Scholar
  8. 8.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. CVGIP 44(1) (1988)Google Scholar
  9. 9.
    Kim, H.S., Kim, J.H.: A two-step circle detection algorithm from the intersecting chords. Pattern Recognition Letters 22, 787–798 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. ACM Commun. 18(2), 120–122 (1975)zbMATHCrossRefGoogle Scholar
  11. 11.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  12. 12.
    Klette, R., Rosenfeld, A.: Digital straightness: A review. Discrete Applied Mathematics 139(1-3), 197–230 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Leavers, V.: Survey: Which Hough transform? 58(2), 250–264 (September 1993)Google Scholar
  14. 14.
    Rosin, P.L.: Techniques for assessing polygonal approximation of curves. IEEE Trans. PAMI 19(6), 659–666 (1997)Google Scholar
  15. 15.
    Wall, K., Danielsson, P.-E.: A fast sequential method for polygonal approximation of digitized curves. CVGIP 28, 220–227 (1984)Google Scholar
  16. 16.
    Weisstein, E.W.: Sagitta. From MathWorld—A Wolfram web resource (1993),
  17. 17.
    Xu, L., Oja, E.: Randomized Hough transform (RHT): Basic mechanisms, algorithms, and computational complexities. CVGIP 57(2), 131–154 (1993)CrossRefGoogle Scholar
  18. 18.
    Yip, R., Tam, P., Leung, D.: Modification of Hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recognition 25(9), 1007–1022 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sahadev Bera
    • 1
  • Partha Bhowmick
    • 2
  • Bhargab B. Bhattacharya
    • 1
  1. 1.Advanced Computing and Microelectronics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations