Advertisement

Comparing Graph Similarity Measures for Graphical Recognition

  • Salim Jouili
  • Salvatore Tabbone
  • Ernest Valveny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6020)

Abstract

In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.

Keywords

Graph matching Graph retrieval Structural representation Performance evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambauen, R., Fisher, S., Bunke, H.: Graph edit distance with node splitting and merging, and its application to diatom identification. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R., Valiente, G.: An image similarity measure based on graph matching. In: Proc. International Symposium on String Processing Information Retrieval, pp. 28–38 (2000)Google Scholar
  3. 3.
    Barrow, H.G., Popplestone, R.J.: Relational descriptions in picture processing. Machine Intelligence 4, 377–396 (1971)Google Scholar
  4. 4.
    Bunke, H.: Attributed of programmed graph grammars and their application to schematic diagram interpretation. IEEE Transactions on Pattern Analysis and Machine Intelligence 4(6), 574–582 (1982)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bunke, H.: Recent developments in graph matching. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 2, pp. 117–124 (2000)Google Scholar
  6. 6.
    Bunke, H., Günter, S., Jiang, X.: Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching. In: Singh, S., Murshed, N.A., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 1–11. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  8. 8.
    Di Ruberto, C., Rodriguez, G., Casta, L.: Recognition of shapes by morphological attributed relational graphs. In: AIIA (2002)Google Scholar
  9. 9.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  10. 10.
    Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of The Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  11. 11.
    Jouili, S., Tabbone, S.: Graph matching using node signatures. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 154–163. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Karray, A., Ogier, J.-M., Kanoun, S., Alimi, M.A.: An ancient graphic documents indexing method based on spatial similarity. In: Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 126–134. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  14. 14.
    Li, C.-Y., Hsu, C.-T.: Region correspondence for image retrieval using graph-theoretic approach and maximum likelihood estimation. In: International Conference on Image Processing, pp. 421–424 (2004)Google Scholar
  15. 15.
    Lopresti, D.P., Wilfong, G.T.: A fast technique for comparing graph representations with applications to performance evaluation. IJDAR 6(4), 219–229 (2003)CrossRefGoogle Scholar
  16. 16.
    Neuhaus, M.: Edit distance-based kernel functions for structural pattern classification. Pattern Recognition (2006)Google Scholar
  17. 17.
    Ounis, I., Pasca, M.: Modeling, indexing and retrieving images using conceptual graphs. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 226–239. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Gcap: Graph-based automatic image captioning. In: Proceedings of the 4th International Workshop on Multimedia Data and Document Engineering (2004)Google Scholar
  19. 19.
    Papadopoulos, A.N., Manolopoulos, Y.: Structure-based similarity search with graph histograms. In: Proceedings of International Workshop on Similarity Search (DEXA IWOSS 1999), September 1999, pp. 174–178 (1999)Google Scholar
  20. 20.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)CrossRefGoogle Scholar
  22. 22.
    Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. on Systems, Man and Cybernetics 13(3), 353–362 (1983)zbMATHGoogle Scholar
  23. 23.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. J. Visual Communication and Image Representation 9, 366–380 (1998)CrossRefGoogle Scholar
  24. 24.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic fourier descriptor. Signal Processing: Image Communication 17, 825–848 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Salim Jouili
    • 1
  • Salvatore Tabbone
    • 1
  • Ernest Valveny
    • 2
  1. 1.LORIA UMR 7503University of Nancy 2Vandoeuvre-lès-Nancy CedexFrance
  2. 2.Centre de Visió per Computador, Dep. Ciències de la ComputacióUniversitat Autònoma de Barcelona, Edifici O, Campus UABBellaterraSpain

Personalised recommendations