Advertisement

A New Image Quality Measure Considering Perceptual Information and Local Spatial Feature

  • Nathalie Girard
  • Jean-Marc Ogier
  • Étienne Baudrier
Conference paper
  • 505 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6020)

Abstract

This paper presents a new comparative objective method for image quality evaluation. This method relies on two keys points: a local objective evaluation and a perceptual gathering. The local evaluation concerns the dissimilarities between the degraded image and the reference image; it is based on a gray-level local Hausdorff distance. This local Hausdorff distance uses a generalized distance transform which is studied here. The evaluation result is a local dissimilarity map (LDMap). In order to include perceptual information, a perceptual map based on the image properties is then proposed. The coefficients of this map are used to weight and to gather the LDMap measures into a single quality measure. The perceptual map is tunable and it gives encouraging quality measures even with naive parameters.

Keywords

Quality measure gray-level image image comparison Hausdorff distance distance transform local dissimilarity measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baudrier, E., Morain-Nicolier, F., Millon, G., Ruan, S.: Binary-image comparison with local-dissimilarity quantification. Pattern Recognition 41(5), 1461–1478 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Levi, G., Montanari, U.: A grey-weighted skeleton. Inform. Control 17, 62–91 (1970)zbMATHCrossRefGoogle Scholar
  3. 3.
    Toivanen, P.: New geodesic distance transforms for gray scale images. Pattern Recognition Letters 17, 437–450 (1996)CrossRefGoogle Scholar
  4. 4.
    Arlandis, J., Pérez, J.C.: The continuos distance transformation: A generalization of the distance transformation for continuos-valued images. In: Amsterdam, I. (ed.) Pattern Recognition & Applications (2000)Google Scholar
  5. 5.
    Toivanen, P., Elmongui, H.: Sequential local transform algorithms for gray-level distance transforms. In: Proc. of the 9th Eur. Sig. Proc. Conf. (1998)Google Scholar
  6. 6.
    Rutovitz, D.: Data structures for operations on digital images. In: Cheng, G.C., Ledley, R.S., Pollok, D.K., Rosenfeld, A. (eds.) Pictorial Pattern Recognition, pp. 105–133 (1968)Google Scholar
  7. 7.
    Lorenzetto, G.P.: Image comparison metrics: A review, July 25 (1998)Google Scholar
  8. 8.
    Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  9. 9.
    Dinet, E., Bartholin, A.: A spatio-colorimetric model of visual attention. In: Proc. of the Expert Symp. on Visual Appearance, Paris, CIE, October 2006, pp. 97–105 (2006)Google Scholar
  10. 10.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database release, Technical report, University of Texas (2005), http://live.ece.utexas.edu/research/quality

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nathalie Girard
    • 1
  • Jean-Marc Ogier
    • 1
  • Étienne Baudrier
    • 2
  1. 1.Laboratoire d’Informatique, Image et InteractionsUniversity of La RochelleLa RochelleFrance
  2. 2.Laboratoire des Sciences de l’Image, de l’Informatique et de la TélédétectionUniversity of StrasbourgStrasbourgFrance

Personalised recommendations