A New Image Quality Measure Considering Perceptual Information and Local Spatial Feature

  • Nathalie Girard
  • Jean-Marc Ogier
  • Étienne Baudrier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6020)


This paper presents a new comparative objective method for image quality evaluation. This method relies on two keys points: a local objective evaluation and a perceptual gathering. The local evaluation concerns the dissimilarities between the degraded image and the reference image; it is based on a gray-level local Hausdorff distance. This local Hausdorff distance uses a generalized distance transform which is studied here. The evaluation result is a local dissimilarity map (LDMap). In order to include perceptual information, a perceptual map based on the image properties is then proposed. The coefficients of this map are used to weight and to gather the LDMap measures into a single quality measure. The perceptual map is tunable and it gives encouraging quality measures even with naive parameters.


Quality measure gray-level image image comparison Hausdorff distance distance transform local dissimilarity measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudrier, E., Morain-Nicolier, F., Millon, G., Ruan, S.: Binary-image comparison with local-dissimilarity quantification. Pattern Recognition 41(5), 1461–1478 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Levi, G., Montanari, U.: A grey-weighted skeleton. Inform. Control 17, 62–91 (1970)zbMATHCrossRefGoogle Scholar
  3. 3.
    Toivanen, P.: New geodesic distance transforms for gray scale images. Pattern Recognition Letters 17, 437–450 (1996)CrossRefGoogle Scholar
  4. 4.
    Arlandis, J., Pérez, J.C.: The continuos distance transformation: A generalization of the distance transformation for continuos-valued images. In: Amsterdam, I. (ed.) Pattern Recognition & Applications (2000)Google Scholar
  5. 5.
    Toivanen, P., Elmongui, H.: Sequential local transform algorithms for gray-level distance transforms. In: Proc. of the 9th Eur. Sig. Proc. Conf. (1998)Google Scholar
  6. 6.
    Rutovitz, D.: Data structures for operations on digital images. In: Cheng, G.C., Ledley, R.S., Pollok, D.K., Rosenfeld, A. (eds.) Pictorial Pattern Recognition, pp. 105–133 (1968)Google Scholar
  7. 7.
    Lorenzetto, G.P.: Image comparison metrics: A review, July 25 (1998)Google Scholar
  8. 8.
    Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  9. 9.
    Dinet, E., Bartholin, A.: A spatio-colorimetric model of visual attention. In: Proc. of the Expert Symp. on Visual Appearance, Paris, CIE, October 2006, pp. 97–105 (2006)Google Scholar
  10. 10.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database release, Technical report, University of Texas (2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nathalie Girard
    • 1
  • Jean-Marc Ogier
    • 1
  • Étienne Baudrier
    • 2
  1. 1.Laboratoire d’Informatique, Image et InteractionsUniversity of La RochelleLa RochelleFrance
  2. 2.Laboratoire des Sciences de l’Image, de l’Informatique et de la TélédétectionUniversity of StrasbourgStrasbourgFrance

Personalised recommendations