Advertisement

Symbol Recognition Using a Concept Lattice of Graphical Patterns

  • Marçal Rusiñol
  • Karell Bertet
  • Jean-Marc Ogier
  • Josep Lladós
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6020)

Abstract

In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.

Keywords

Graphics Recognition Symbol Classification Concept Lattices Shape Descriptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertet, K., Ogier, J.M.: Graphic Recognition: The Concept Lattice Approach. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 265–278. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Chen, C.C.: Improved Moment Invariants for Shape Discrimination. Pattern Recognition 26(5), 683–686 (1993)CrossRefGoogle Scholar
  3. 3.
    Coustaty, M., Guillas, S., Visani, M., Bertet, K., Ogier, J.M.: On the Joint Use of a Structural Signature and a Galois Lattice Classifier for Symbol Recognition. In: Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 61–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Guillas, S., Bertet, K., Ogier, J.M.: A Generic Description of the Concept Lattices’ Classifier: Application to Symbol Recognition. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 47–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Hu, M.: Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory 8, 179–187 (1962)Google Scholar
  7. 7.
    Hupkens, T.M., de Clippeleir, J.: Noise and intensity invariant moments. Pattern Recognition Letters 16(4), 371–376 (1995)CrossRefGoogle Scholar
  8. 8.
    Kanungo, T., Haralick, R.M., Philips, I.: Global and Local Document Degradation Models. In: Proceedings of the Second International Conference on Document Analysis and Recognition, ICDAR 1993, pp. 730–734 (1993)Google Scholar
  9. 9.
    Rosin, P.L., West, G.A.W.: Segmentation of Edges into Lines and Arcs. Image and Vision Computing 7(2), 109–114 (1989)CrossRefGoogle Scholar
  10. 10.
    Sardana, H.K., Daemi, M.F., Ibrahim, M.K.: Global Description of Edge Patterns Using Moments. Pattern Recognition 27(1), 109–118 (1994)CrossRefGoogle Scholar
  11. 11.
    Valveny, E., Dosch, P.: Report on the Second Symbol Recognition Contest. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 381–397. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marçal Rusiñol
    • 1
  • Karell Bertet
    • 2
  • Jean-Marc Ogier
    • 2
  • Josep Lladós
    • 1
  1. 1.Computer Vision Center, Dept. Ciències de la Computació Edifici O, UABBellaterraSpain
  2. 2.L3IUniversity of La RochelleLa Rochelle Cédex 1France

Personalised recommendations