Advertisement

Unified Pairwise Spatial Relations: An Application to Graphical Symbol Retrieval

  • K. C. Santosh
  • Laurent Wendling
  • Bart Lamiroy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6020)

Abstract

In this paper, we present a novel unifying concept of pairwise spatial relations. We develop two way directional relations with respect to a unique point set, based on topology of the studied objects and thus avoids problems related to erroneous choices of reference objects while preserving symmetry. The method is robust to any type of image configuration since the directional relations are topologically guided. An automatic prototype graphical symbol retrieval is presented in order to establish its expressiveness.

Keywords

Directional Relation Topological Relation Inductive Logic Programming Spatial Reasoning Minimum Bounding Rectangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Worboys, M.: GIS - A computing perspective. Taylor and Francis, Abington (1995)Google Scholar
  2. 2.
    Goodchild, M., Gopal, S.: The Accuracy of Spatial Databases. Taylor and Francis, Basingstoke (1990)Google Scholar
  3. 3.
    Vandenbrande, J.H., Requicha, A.A.G.: Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models. IEEE PAMI 15(12), 1269–1285 (1993)Google Scholar
  4. 4.
    Centeno, J.S.: Segmentation of Thematic Maps Using Colour and Spatial Attributes. In: Chhabra, A.K., Tombre, K. (eds.) GREC 1997. LNCS, vol. 1389, pp. 221–230. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Lee, S.H., Hsu, F.J.: Spatial Reasoning and Similarity Retrieval of Images Using 2D C-string Knowledge Representation. PR 25(3), 305–318 (1992)MathSciNetGoogle Scholar
  6. 6.
    Heidemann, G.: Combining spatial and colour information for content based image retrieval. CVIU 94, 234–270 (2004)Google Scholar
  7. 7.
    Medasani, S., Krishnapuram, R.: A fuzzy approach to content-based image retrieval. In: Proc. of FUZZ-IEEE, Seoul, Korea, pp. 1251–1260 (1997)Google Scholar
  8. 8.
    Freeman, J.: The modelling of spatial relations. CGIP 4, 156–171 (1975)Google Scholar
  9. 9.
    Rosenfeld, A., Kak, A.: Digital picture processing, vol. 2. Academic Press, London (1982)Google Scholar
  10. 10.
    Egenhofer, M., Franzosa, R.: Point-set Topological Spatial Relations. Intl. Journal of GIS 5(2), 161–174 (1991)Google Scholar
  11. 11.
    Egenhofer, M., Herring, J.R.: Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases. University of Maine, Research Report (1991)Google Scholar
  12. 12.
    Papadias, D., Sellis, T., Theodoridis, Y., Egenhofer, M.J.: Topological Relations in the world of Minimum Bounding Rectangles: a Study with R-trees. In: Intl. Conf. on Managament Data, pp. 92–103 (1995)Google Scholar
  13. 13.
    Renz, J., Nebel, B.: Spatial Reasoning with Topological Information. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 351–372. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Bloch, I.: Fuzzy relative position between objects in image processing: a morphological approach. IEEE PAMI 21(7), 657–664 (1999)Google Scholar
  15. 15.
    Wang, X., Keller, J.: Human-Based Spatial Relationship Generalization Through Neural/Fuzzy Approaches. Fuzzy Sets and Systems 101, 5–20 (1999)CrossRefGoogle Scholar
  16. 16.
    Matsakis, P., Wendling, L.: A New Way to Represent the Relative Position Between Areal Objects. IEEE PAMI 21(7), 634–643 (1999)Google Scholar
  17. 17.
    Mitra, D.: A Class of Star-Algebras for Point-Based Qualitative Reasoning in Two-Dimensional Space. In: 15th Intl. Florida AI Research Society Conf., pp. 486–491 (2002)Google Scholar
  18. 18.
    Peuquet, D., CI-Xiang, Z.: An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane. PR 20(1), 65–74 (1987)Google Scholar
  19. 19.
    Retz-Schmidt, G.: Various Views on Spatial Prepositions. AI Magazine, 95–104 (1988)Google Scholar
  20. 20.
    Egenhofer, M.J.: A Formal Definition of Binary Topological Relationships. In: Litwin, W., Schek, H.-J. (eds.) FODO 1989. LNCS, vol. 367, pp. 457–472. Springer, Heidelberg (1989)Google Scholar
  21. 21.
    Chen, J., Li, C., Li, Z., Gold, C.: A Voronoi-based 9-intersection Model for Spatial Relations. Intl. Journal of GIS 15(3), 201–220 (2001)Google Scholar
  22. 22.
    Abdelmoty, A., El-Geresy, B.: A General Method for Spatial Reasoning in Spatial Databases. In: The Fourth International Conference on Information and Knowledge Management, pp. 312–317 (1995)Google Scholar
  23. 23.
    Clementini, E., Felice, P.D., van Oosterom, P.: A small set of formal topological relationships suitable for end-user interaction. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 277–336. Springer, Heidelberg (1993)Google Scholar
  24. 24.
    Egenhofer, M., Sharma, J., Mark, D.: A Critical Comparison of the 4-Intersection and 9-Intersection Models for Spatial Relations: Formal Analysis. In: McMaster, R., Armstrong, M. (eds.), pp. 56–69 (1993)Google Scholar
  25. 25.
    Miyajima, K., Ralescu, A.: Spatial Organization in 2D Segmented Images: Representation and Recognition of Primitive Spatial Relations. Fuzzy Sets and Systems 2(65), 225–236 (1994)CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Makedon, F.: R-histogram: Quantitative representation of spatial relations for similarity-based image retrieval. In: The 11th Annual ACM International Conf. on Multimedia, pp. 323–326 (2003)Google Scholar
  27. 27.
    Dutta, S.: Approximate spatial reasoning: integrating qualitative and quantitative constraints. Intl. Journal of Approximate Reasoning 5, 307–331 (1991)CrossRefGoogle Scholar
  28. 28.
    Jungert, E.: Qualitative spatial reasoning for determination of object relations using symbolic interval projections. In: IEEE Sympo. on Visual Lang., pp. 24–27 (1993)Google Scholar
  29. 29.
    Sun, H., Chen, X.: Research on Technologies of Spatial Configuration Information Retrieval. In: IEEE 8th ACIS Int. Conf. on Software Engineering, AI, Networking, and Parallel/Distributed Computing, pp. 396–401 (2007)Google Scholar
  30. 30.
    Xuehua, T., Lingkui, M., Kun, Q.: Study on the Uncertain Directional Relations Model based on Cloud Model. In: Intl. Archives of the Photogrammetry, Remote Sensing and Spatial Infor. Sc., pp. 345–350 (2008)Google Scholar
  31. 31.
    Santosh, K.C., Lamiroy, B., Ropers, J.P.: Utilisation de Programmation Logique Inductive pour la Reconnaissance de Symboles. In: 9èmes Journées Francophones Extraction et Gestion des Connaissances, pp. 35–42 (2009)Google Scholar
  32. 32.
    Santosh, K.C., Lamiroy, B., Ropers, J.P.: Inductive logic programming for symbol recognition. In: 10th ICDAR, Barcelona, Spain, pp. 1330–1334 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • K. C. Santosh
    • 1
  • Laurent Wendling
    • 2
  • Bart Lamiroy
    • 3
  1. 1.INRIA Nancy-Grand Est 
  2. 2.Nancy Université Henri Poincaré 
  3. 3.Nancy Université LORIAVandoeuvre-lés-Nancy CedexFrance

Personalised recommendations