Advertisement

A Multilevel Lot Sizing Game with Restricted Cooperation

  • Julia DrechselEmail author
Chapter
  • 753 Downloads
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 644)

Abstract

In Chap. 5, we started with a very simple form of a purchasing alliance (a dynamic lot sizing problem was the basis for the ELS game). We then extended the scope to cooperative production where scarce capacities occur and transshipments can be used to allocate production in the coalition in a cost optimal way (see Chap. 7). The next step would be to widen the view for multilevel settings that appear in realistic situations in supply networks.

Keywords

Cooperative Game Master Problem Supply Network Grand Coalition Cost Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Algaba, E., Bilbao, J. M., van den Brink, R., & Jiménez-Losada, A. (2004). Cooperative Games on Antimatroids. Discrete Mathematics, 282(1-3), 1–15.CrossRefGoogle Scholar
  2. Algaba, E., Bilbao, J. M., & Lpez, J. J. (2001) A Unified Approach to Restricted Games. Theory and Decision, 50(4), 333–345.CrossRefGoogle Scholar
  3. Bilbao, J. M. (2003). Cooperative Games under Augmenting Systems. SIAM Journal of Discrete Mathematics, 17(1), 122–133.CrossRefGoogle Scholar
  4. Bilbao, J. M., Jiménez, N., & Lebrn, E. (1999). The Core of Games on Convex Geometries. European Journal of Operational Research, 119(2), 365–372.CrossRefGoogle Scholar
  5. Bilbao, J. M., Jiménez, N., Lebrn, E., & Lpez, J. J. (2006). The Marginal Operators for Games on Convex Geometries. International Game Theory Review, 8(1), 141–151.CrossRefGoogle Scholar
  6. Borm, P., Owen, G., & Tijs, S. H. (1992). On the Position Value for Communcation Situations. SIAM Journal on Discrete Mathematics, 5(3), 305–320.CrossRefGoogle Scholar
  7. van den Brink, R. (1997). An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure. International Journal of Game Theory, 26(1), 27–43.CrossRefGoogle Scholar
  8. Derks, J. J. M., & Gilles, R. P. (1995). Hierarchical Organization Structures and Constraints on Coalition Formation. International Journal of Game Theory, 24(2), 147–163.CrossRefGoogle Scholar
  9. Derks, J. J. M., & Peters, H. (1993). A Shapley Value for Games with Restricted Coalitions. International Journal of Game Theory, 21(4), 351–360.CrossRefGoogle Scholar
  10. Derks, J. J. M., & Reijnierse, H. (1998). On the Core of a Collection of Coalitions. International Journal of Game Theory, 27(3), 451–459.CrossRefGoogle Scholar
  11. Faigle, U. (1989). Cores of Games with Restricted Cooperation. Mathematical Methods of Operations Research, 33(6), 405–422.CrossRefGoogle Scholar
  12. Faigle, U., & Kern, W. (1992). The Shapley Value for Cooperative Games Under Precedence Constraints. International Journal of Game Theory, 21(3), 249–266.CrossRefGoogle Scholar
  13. Faigle, U., & Kern, W. (2000). On the Core of Ordered Submodular Cost Games. Mathematical Programming, 87(3), 483–499.CrossRefGoogle Scholar
  14. Faigle, U., & Peis, B. (2006). Cooperative Games with Lattice Structures. Working Paper, Universitt zu Kln.Google Scholar
  15. Gilles, R. P., Owen, G., & van den Brink, R. (1992). Games with Permission Structures: The Conjunctive Approach. International Journal of Game Theory, 20(3), 277–293.CrossRefGoogle Scholar
  16. Grabisch, M., & Lange, F. (2007). Games on Lattices, Multichoice Games and the Shapley Value: A New Approach. Mathematical Methods of Operations Research, 65(1), 153–167.CrossRefGoogle Scholar
  17. Grabisch, M., & Xie, L. (2007). A New Approach to the Core and Weber Set of Multichoice Games. Mathematical Methods of Operations Research, 66(3), 491–512.CrossRefGoogle Scholar
  18. Hamiache, G. (1999). A Value with Incomplete Communication. Games and Economic Behavior, 26(1), 59–78.CrossRefGoogle Scholar
  19. Kaneko, M., & Wooders, M. H. (1982). Cores of Partitioning Games. Mathematical Social Sciences, 3(4), 313–327.CrossRefGoogle Scholar
  20. Myerson, R. B. (1977). Graphs and Cooperation in Games. Mathematics of Operations Research, 2(2), 225–229.CrossRefGoogle Scholar
  21. Okamoto, Y. (2003). Some Properties of the Core on Convex Geometries. Mathematical Methods of Operations Research, 56(3), 377–386.CrossRefGoogle Scholar
  22. Owen, G. (1986). Values of Graph-Restricted Games. SIAM Journal of Algebraic and Discrete Methods, 7(2), 210–220.CrossRefGoogle Scholar
  23. Peleg, B. (1999). Axiomatizations of the Core. In R. J. Aumann, S. Hart (Eds.), Handbook of Game Theory with Economic Applications, Volume 1 pp. 397–412. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
  24. Quindt, T. (1991). Necessary and Sufficient Conditions for Balancedness in Partitioning Games. Mathematical Social Sciences, 22(1), 87–91.CrossRefGoogle Scholar
  25. Solymosi, T. (2008). Bargaining Sets and the Core in Partitioning Games. Central European Journal of Operations Research, 16(4), 425–440.CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.DuisburgGermany

Personalised recommendations