Advertisement

Selected Topics in Cooperative Game Theory

  • Julia DrechselEmail author
Chapter
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 644)

Abstract

This chapter shall provide the theoretical basis coming from cooperative game theory. We start with a survey of historical developments in the field of game theory. After this short excursion, we introduce cooperative games and their properties. As the fundamental contribution of cooperative game theory are methods to allocate cooperative profits or costs, we present the most prominent allocation methods. Thereby, we concentrate on the core and its variants as this method will be applied in the following chapters.

Keywords

Nash Equilibrium Cooperative Game Solution Concept Grand Coalition Cost Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albizuri, M. J., Santos, J. C., & Zarzuelo, J. M. (2003). On the Serial Cost Sharing Rule. International Journal of Game Theory, 31(3), 437–446.Google Scholar
  2. Arcelus, F. J., Bhadury, J., Srinivasan, G. (1997). On the Interaction between Indirect Cost Allocations and the Firm’s Objectives. European Journal of Operational Research, 102(3), 445–454.Google Scholar
  3. Aumann, R. J., & Maschler, M. (1964). The Bargaining Set for Coopertive Games, In M. Dresher, L. S. Shapley, A. W. Tucker (Eds.), Advances in Game Theory, Annals of Mathematical Studies No. 52 pp. 443–476. Princeton University Press, Princeton.Google Scholar
  4. Balachandran, B. V., & Ramakrishnan, R. T. S. (1981). Joint Cost Allocation: A Unified Approach. The Accounting Review, 56(1), 85–96.Google Scholar
  5. Barton, T. L. (1988). Intuitive Choice of Cooperative Sharing Mechanisms for Joint Cost Savings: Some Empirical Results. Abacus, 24(2), 162–169.Google Scholar
  6. Bauso, D., & Timmer, J. (2009). Robust Dynamic Cooperative Games. International Journal of Game Theory, 38(1), 23–36.Google Scholar
  7. Biddle, G. C., & Steinberg, R. (1984). Allocations of Joint and Common Costs. Journal of Accounting Literature, 3(1), 1–45.Google Scholar
  8. Bilbao, J. M., Fernández, J. R., Jiménez, N., & Lpez, J. J. (2007). The Core and the Weber Set for Bicooperative Games. International Journal of Game Theory, 36(2), 209–222.Google Scholar
  9. Bilbao, J. M., & Martnez-Legaz, J. E. (2002). Some Applications of Convex Analysis to Cooperative Game Theory. Journal of Statistics and Management Systems, 5(1), 39–61.Google Scholar
  10. Binmore, K. (1992). Fun and Games – A Text on Game Theory. D. C. Heath and Company, Lexington Massachusetts.Google Scholar
  11. Bird, C. G. (1976). On Cost Allocation for a Spanning Tree: A Game Theoretic Approach. Networks, 6(4), 335–350.Google Scholar
  12. Borm, P., Hamers, H., & Hendrickx, R. (2001). Operations Research Games: A Survey. TOP, Sociedad de Estadstica e Investigacin Operativa, 9(2), 139–216.Google Scholar
  13. Brandenburger, A. M., & Nalebuff, B. J. (1996). Co-opetition. Doubleday, New York.Google Scholar
  14. Branzei, R., Dimitrov, D., Pickl, S., & Tijs, S. (2004). How to Cope with Division Problems under Interval Uncertainty of Claims. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(2), 191–200.Google Scholar
  15. Branzei, R., Dimitrov, D., & Tijs, S. (2003). Shapley-Like Values for Interval Brankruptcy Games. Economics Bulletin, 3(9), 1–8.Google Scholar
  16. Branzei, R., Dimitrov, D., & Tijs, S. (2008a). Models in Cooperative Game Theory (2nd ed.). Springer, Berlin.Google Scholar
  17. Calvo, E., & Santos, J. C. (2000). A Value for Multichoice Games. Mathematical Social Sciences, 40(3), 341–354.Google Scholar
  18. Chatterjee, K., & Samuelson, W. F. (Eds.). (2001). Game Theory and Business Applications. Kluwer Academic Publishers, Boston.Google Scholar
  19. Claus, A., & Kleitman, D. J. (1973). Cost Allocation for a Spanning Tree. Networks, 3(4), 289–304.Google Scholar
  20. Cournot, A. (1838). Recherches sur les Principes Mathmatiques de la Thorie des Richesses. Hachette, Paris.Google Scholar
  21. Curiel, I. (1997). Cooperative Game Theory and Applications. Kluwer Academic Publishers, Boston.Google Scholar
  22. Curiel, I., Pederzoli, G., & Tijs, S. (1989). Sequencing Games. European Journal of Operational Research, 40(3), 344–351.Google Scholar
  23. Davis, M., & Maschler, M. (1965). The Kernel of a Cooperative Game. Naval Research Logistics Quarterly, 12(3/4), 223–259.Google Scholar
  24. Dubey, P. (1982). The Shapley Value as Aircraft Landing Fees-Revisited, Management Science. 28(8), 869–874.Google Scholar
  25. Engevall, S., Göthe-Lundgren, M., & Värbrand, P. (2004). The Heterogeneous Vehicle-Routing Game. Transportation Science, 38(1), 71–85.Google Scholar
  26. Estvez-Fernndez, A., Borm, P., Meertens, M., & Reijnierse, H. (2009). On the Core of Routing Games with Revenues. International Journal of Game Theory, 38(2), 291–304.Google Scholar
  27. Faigle, U. (1989). Cores of Games with Restricted Cooperation. Mathematical Methods of Operations Research, 33(6), 405–422.Google Scholar
  28. Faigle, U., Fekete, S. P., Hochstättler, W., & Kern, W. (1998a). On Approximately Fair Cost Allocation in Euclidean TSP Games. OR Spektrum, 20(1), 29–37.Google Scholar
  29. Faigle, U., & Kern, W. (1993). On Some Approximately Balanced Combinatorial Cooperative Games. Mathematical Methods of Operations Research, 38(2), 141–152.Google Scholar
  30. Faigle, U., & Kern, W. (1998). Approximate Core Allocation for Binpacking Games. SIAM Journal on Discrete Mathematics, 11(3), 387–399.Google Scholar
  31. Frisk, M., Göthe-Lundgren, M., Jörnsten, K., & Rönnqvist, M. (2010). Cost Allocation in Collaborative Forest Transportation. European Journal of Operational Research, 205(2), 448–458.Google Scholar
  32. Fromen, B. (2004). Faire Aufteilung in Unternehmensnetzwerken. Deutscher Universitts-Verlag, Wiesbaden.Google Scholar
  33. de Frutos, M. A. (1998). Decreasing Serial Cost Sharing under Economies of Scale. Journal of Economic Theory, 79(2), 245–275.Google Scholar
  34. Fudenberg, D., & Tirole, J. (1991). Game Theory. MIT Presss, Cambridge, Massachusetts.Google Scholar
  35. Gangolly, J. S. (1981). On Joint Cost Allocation: Independent Cost Proportional Scheme (ICPS) and Its Properties. Journal of Accounting Research, 19(2), 299–312.Google Scholar
  36. Gillies, D. B. (1959). Solutions to General Non-Zero-Sum Games. In A. W. Tucker, R. D. Luce (Eds.), Contributions to the Theory of Games IV pp. 47–85. Princeton University Press, Princeton.Google Scholar
  37. Grabisch, M., & Xie, L. (2007). A New Approach to the Core and Weber Set of Multichoice Games. Mathematical Methods of Operations Research, 66(3), 491–512.Google Scholar
  38. Grafe, F., Iñarra, E., & Zarzuelo, J. M. (1998). Population Monotonic Allocation Schemes on Externality Games. Mathematical Methods of Operations Research, 48(1), 71–80.Google Scholar
  39. Hamers, H., Borm, P., van de Leensel, R., & Tijs, S. (1999). Cost Allocation in the Chinese Postman Problem. European Journal of Operational Research, 118(1), 153–163.Google Scholar
  40. Hamers, H., Klijn, F., Solymosi, T., Tijs, S., & Villar, J. P. (2002). Assignment Games Satisfy the CoMa-Property. Games and Economic Behavior, 38(2), 231–239.Google Scholar
  41. Hamlen, S. S., Hamlen, W. A., & Tschirhart, J. (1980). The Use of the Generalized Shapley Allocation in Joint Cost Allocation. The Accounting Review, 55(2), 269–287.Google Scholar
  42. Harsanyi, J. C. (1966). A General Theory of Rational Behavior in Game Situations. Econometrica, 34(3), 613–634.Google Scholar
  43. Harsanyi, J. C. (1967). Games with Incomplete Information Played by Bayesian Players – Part I The Basic Model. Management Science, 14(3), 159–182.Google Scholar
  44. Harsanyi, J. C. (1968a). Games with Incomplete Information Played by Bayesian Players – Part II Bayesian Equilibrium Points. Management Science, 14(5), 320–334.Google Scholar
  45. Harsanyi, J. C., & Selten, R. (1988). A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge, Massachusetts.Google Scholar
  46. Hartman, B. C., Dror, M., & Shaked, M. (2000). Cores of Inventory Centralization Games. Games and Economic Behavior, 31(1), 26–49.Google Scholar
  47. Heijboer, G. (2003). Quantitative Analysis of Strategic and Tactical Purchasing Decisions. Twente University Press, Enschede.Google Scholar
  48. Hinojosa, M. A., Mármol, A. M., & Thomas, L. C. (2005). Core, Least Core, and Nucleolus for Multiple Scenario Cooperative Games. European Journal of Operational Research, 164(1), 225–238.Google Scholar
  49. Hsiao, C.-R. (1995a). A Value for Continuously-Many-Choice Cooperative Games. International Journal of Game Theory, 24(3), 273–292.Google Scholar
  50. Hsiao, C.-R., & Raghavan, T. E. S. (1992). Monotonicity and Dummy Free Property for Multichoice Cooperative Games. International Journal of Game Theory, 21(3), 301–312.Google Scholar
  51. Hsiao, C.-R., & Raghavan, T. E. S. (1993). Shapley Value for Multichoice Cooperative Games. Games and Economic Behavior, 5(2), 240–256.Google Scholar
  52. Hwang, Y.-A., & Liao, Y.-H. (2008). Potential in Multichoice Cooperative TU Games. Asia-Pacific Journal of Operational Research, 25(5), 591–611.Google Scholar
  53. Ichiishi, T. (1981). Super-Modularity: Applications to Convex Games and to the Greedy Algorithm for LP. Journal of Economic Theory, 25(2), 283–286.Google Scholar
  54. Illner, A. (1999). Kostenallokation bei dezentraler Organisation. Peter Lang Europischer Verlag der Wissenschaften, Frankfurt.Google Scholar
  55. Jain, K., & Mahdian, M. (2007). Cost Sharing. In N. Nisan, T. Roughgarden, V. Tardos, V. V. Vazirani (Eds.), Algorithmic Game Theory pp. 385–410. Cambridge University Press, Cambridge.Google Scholar
  56. Jost, P.-J. (Ed.). (2001). Die Spieltheorie in der Betriebswirtschaftslehre. Schffer-Poeschel Verlag, Stuttgart.Google Scholar
  57. Kannai, Y. (1999). The Core and Balancedness, In R. J. Aumann, S. Hart (Eds.), Handbook of Game Theory with Economic Applications, Volume 1 pp. 355–395. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
  58. Klijn, F., Slikker, M., & Zarzuelo, J. (1999). Characterizations of a Multichoice Value. International Journal of Game Theory, 28(4), 521–532.Google Scholar
  59. Lehrer, E. (2002). Allocation Processes in Cooperative Games. International Journal of Game Theory, 31(3), 341–351.Google Scholar
  60. Lemaire, J. (1984). An Application of Game Theory: Cost Allocation. Astin Bulletin, 14(1), 61–81.Google Scholar
  61. Lewontin, R. C. (1961). Evolution and the Theory of Games. Journal of Theoretical Biology, 1(3), 382–403.Google Scholar
  62. Littlechild, S. C. (1974). A Simple Expression for the Nucleolus in a Special Case. International Journal of Game Theory, 3(1), 21–29.Google Scholar
  63. Littlechild, S. C., & Thompson, G. F. (1973). A Simple Expression for the Shapley Value in a Special Case. Management Science, 20(3), 370–372.Google Scholar
  64. Littlechild, S. C., & Thompson, G. F. (1977a). Aircraft Landing Fees: A Game Theory Approach. The Bell Journal of Economics, 8(2), 186–204.Google Scholar
  65. Littlechild, S. C., & Vaidya, K. G. (1976). The Propensity to Disrupt and the Disruption Nucleolus of a Charachteristic Function Game. International Journal of Game Theory, 5(2/3), 151–161.Google Scholar
  66. Louderback, J. G. (1976). Another Approach to Allocating Joint Costs: A Comment. The Accounting Review, 51(3), 683–685.Google Scholar
  67. Luce, R. D., & Raiffa, H. (1957). Games and Decisions – Introduction and Critical Survey. John Wiley & Sons, Inc., New York.Google Scholar
  68. Maschler, M. (1992). The Bargaining Set, Kernel, and Nucleolus. In R. J. Aumann, S. Hart (Eds.), Handbook of Game Theory with Economic Applications, Volume 1 pp. 591–667. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
  69. Maschler, M., Peleg, B., & Shapley, L. S. (1979). Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts. Mathematics of Operations Research, 4(4), 303–338.Google Scholar
  70. Meca, A., Garca-Jurado, I., & Borm, P. (2003). Cooperation and Competition in Inventory Games. Mathematical Methods of Operations Research, 57(3), 481–493.Google Scholar
  71. Moghaddam, A. T. N., & Michelot, C. (2009). A Contribution to the Linear Programming Approach to Joint Cost Allocation: Methodology and Application. European Journal of Operational Research, 197(3), 999–1011.Google Scholar
  72. Morgenstern, O. (1963). Spieltheorie und Wirtschaftswissenschaft. Oldenbourg, Wien.Google Scholar
  73. Moriarity, S. (1975). Another Approach to Allocating Joint Costs. The Accounting Review, 50(4), 791–795.Google Scholar
  74. Moriarity S. (Ed.). (1981b). Joint Cost Allocations. Proceedings of the University of Oklahoma, Conference on Cost Allocation, Oklahoma.Google Scholar
  75. Moulin, H., & Shenker, S. (1992). Serial Cost Sharing. Econometrica, 60(5), 1009–1037.Google Scholar
  76. Muto, S., Nakayama, M., Potters, J., & Tijs, S. (1988). On Big Boss Games. The Economics Studies Quarterly, 39(4), 303–321.Google Scholar
  77. Muto, S., Potters, J., & Tijs, S. (1989). Information Market Games. International Journal of Game Theory, 18(2), 209–226.Google Scholar
  78. Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University Press, Cambridge Massachusetts.Google Scholar
  79. Nagarajan, M., & Sošić, G. (2008). Game-Theoretic Analysis of Cooperation among Supply Chain Agents: Review and Extensions. European Journal of Operational Research, 187(3), 719–745.Google Scholar
  80. Nash, J. F. (1951). Non-Cooperative Games. Annals of Mathematics, 54(2), 286–295.Google Scholar
  81. Nash, J. F. (1953). Two-Person Cooperative Games. Econometrica, 21(1), 128–140.Google Scholar
  82. von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100(1), 295–320.Google Scholar
  83. van den Nouweland, A., Tijs, S., Potters, J., & Zarzuelo, J. (1995). Cores and Related Solution Concepts for Multi-Choice Games. Mathematical Methods of Operations Research, 41(3), 289–311.Google Scholar
  84. Osborne, M. J., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge Massachusetts.Google Scholar
  85. Owen, G. (1975). On the Core of Linear Production Games. Mathematical Programming, 9(1), 358–370.Google Scholar
  86. Owen, G. (2001). Game Theory (3rd ed.). Academic Presss, San Diego.Google Scholar
  87. Peters, H., & Zank, H. (2005). The Egalitarian Solution for Multichoice Games. Annals of Operations Research, 137(1), 399–409.Google Scholar
  88. Pfaff, D. (1994). On the Allocation of Overhead Costs. European Accounting Review, 1(1), 49–70.Google Scholar
  89. Ransmeier, J. S. (1942). The Tennessee Valley Authority. The Vanderbilt University Press, Nashville.Google Scholar
  90. Rasmusen, E. (2007). Games and Information – An Introduction to Game Theory (4th ed.). Blackwell Publishing, Malden.Google Scholar
  91. Roth, A. E. (Ed.). (1988). The Shapley Value – Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge.Google Scholar
  92. Schmeidler, D. (1969). The Nucleolus of a Characteristic Function Game. SIAM Journal of Applied Mathematics, 17(6), 1163–1170.Google Scholar
  93. Schotanus, F. (2007). Horizontal Cooperative Purchasing. PrintPartners Ipskamp B. V., Enschede.Google Scholar
  94. Selten, R. (1975). Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games. International Journal of Game Theory, 4(1), 25–55.Google Scholar
  95. Shapley, L. S. (1953). A Value for n-Person Games. In: A. W. Tucker, H. W. Kuhn (Eds.), Contributions to the Theory of Games II pp. 307–317. Princeton University Press, Princeton.Google Scholar
  96. Shapley, L. S. (1967). On Balanced Sets and Cores. Naval Research Logistics Quarterly, 14(4), 453–460.Google Scholar
  97. Shapley, L. S. (1971). Cores of Convex Games. International Journal of Game Theory, 1(1), 11–26.Google Scholar
  98. Shapley, L. S., & Shubik, M. (1966). Quasi-Cores in a Monetary Economy with Nonconvex Preferences. Econometrica, 34(4), 805–827.Google Scholar
  99. Shapley, L. S., & Shubik, M. (1971). The Assignment Game I: The Core. International Journal of Game Theory, 1(1), 111–130.Google Scholar
  100. Shubik, M. (1962). Incentives, Decentralized Control, the Assignment of Joint Costs and Internal Pricing. Management Science, 8(3), 325–343.Google Scholar
  101. Shubik, M. (1982). Game Theory in the Social Sciences. MIT Press, Cambridge, Massachusetts.Google Scholar
  102. Snyder, H., & Davenport, E. (1997). What Does It Really Cost? Allocating Indirect Costs. Asian Libraries, 6(3/4), 205–214.Google Scholar
  103. Solymosi, T. (1999). On the Bargaining Set, Kernel and Core of Superadditive Games. International Journal of Game Theory, 28(2), 229–240.Google Scholar
  104. Straffin, P. D., & Heaney, J. P. (1981). Game Theory and the Tennessee Valley Authority. International Journal of Game Theory, 10(1), 35–43.Google Scholar
  105. Tijs, S. H., & Driessen, S. H. (1986). Extensions of Solution Concepts by Means of Multiplicative ε-Tax Games. Mathematical Social Sciences, 12(1), 9–20.Google Scholar
  106. van Velzen, B., Hamers, H., & Norde, H. (2004). Characterizing Convexity of Games Using Marginal Vectors. Discrete Applied Mathematics, 143(3), 298–306.Google Scholar
  107. Young, H. P. (1994). Cost Allocation. In: R. J. Aumann, S. Hart (Eds.), Handbook of Game Theory with Economic Applications, Volume 2 pp. 1193–1235. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
  108. Young, H. P., Okada, N., & Kashimoto, T. (1982). Cost Allocation in Water Resources Development. Water Resources Research, 18(3), 463–475.Google Scholar
  109. Zelewski, S. (2007). Faire Verteilung von Effizienzgewinnen in Supply Webs. In H. Corsten, H. Missbauer (Eds.), Produktions- und Logistikmanagement – Festschrift fr Gnther Zpfel zum 65. Geburtstag pp. 553–572. Verlag Franz Vahlen, Mnchen.Google Scholar
  110. Zermelo, E. (1913). ber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In E. W. Hobson, A. E. H. Love (Eds.), Proceedings of the Fith International Congress of Mathematicians. Cambridge University Press, Cambridge, 501–504.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.DuisburgGermany

Personalised recommendations