Skip to main content

GPU-Accelerated Robotic Intra-operative Laparoscopic 3D Reconstruction

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6135))

Abstract

In this paper we present a real-time intra-operative reconstruction system for laparoscopic surgery. The system builds upon a surgical robot for laparoscopy that has previously been developed by us. Such a system is valuable for surgeons, who can get a three dimensional visualization of the scene online, without having to postprocess data. We gain a significant speed increase over existing such systems by carefully parallelizing tasks and using the GPU for computationally expensive sub-tasks, making real-time reconstruction and visualization possible. Our implementation is also robust with respect to outliers and can potentially be extended to be used with non-robotic surgery. We demonstrate the performance of our system on ex-vivo samples and compare it to alternative implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

  2. Bay, H., Tuytelaars, T., Gool, L.J.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker, description of the algorithm. Tech. rep., Intel Corporation Microprocessor Research Labs (2000) (from the OpenCV documentation)

    Google Scholar 

  4. Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: Proceedings of Photogrammetric Computer Vision. The International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences (2006)

    Google Scholar 

  5. Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision (2007)

    Google Scholar 

  6. Koppel, D., Wang, Y.F., Lee, H.: Image-based rendering and modeling in video-endoscopy. In: Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2004, pp. 269–272. IEEE, Arlington (2004)

    Chapter  Google Scholar 

  7. Koppel, D., Wang, Y.F., Lee, H.: Robust and real-time image stabilization and rectification. In: Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision/IEEE Workshop on Motion and Video Computing, vol. 1, pp. 320–355. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  8. Lourakis, M.I.A., Argyros, A.A.: The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. Tech. Rep. 340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece (August 2004), http://www.ics.forth.gr/~lourakis/sba

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: 3d reconstruction of complex structures with bundle adjustment: an incremental approach. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May 2006, pp. 3055–3061. Orlando, Florida (2006)

    Chapter  Google Scholar 

  11. Salzmann, M., Hartley, R., Fua, P.: Convex optimization for deformable surface 3-d tracking. In: Proceedings of the 2007 IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  12. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), June 1994, pp. 593–600 (1994)

    Google Scholar 

  13. Wengert, C.: Quantitative Endoscopy. Ph.D. thesis, ETH Zürich (2008)

    Google Scholar 

  14. Zach, C., Gallup, D., Frahm, J.M.: Fast gain-adaptive klt tracking on the gpu. In: Proceedings of Computer Vision and Pattern Recognition Workshops, pp. 1–7 (2008)

    Google Scholar 

  15. Zinßer, T., Gräßl, C., Niemann, H.: Efficient feature tracking for long video sequences. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 326–333. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moll, M., Tang, HW., Van Gool, L. (2010). GPU-Accelerated Robotic Intra-operative Laparoscopic 3D Reconstruction. In: Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2010. Lecture Notes in Computer Science, vol 6135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13711-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13711-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13710-5

  • Online ISBN: 978-3-642-13711-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics