Skip to main content

The Biochemistry of Syringomyelia

  • Chapter
  • First Online:
Syringomyelia

Abstract

This chapter introduces the subjects of fluid and tissue biochemistry, as relevant to syringomyelia. Syrinx fluid biochemistry is examined, initially by describing cerebrospinal fluid and then by discussing the syrinx contents. In addition, the chapter reviews chemical processes in the tissues around the syrinx, relating these to syrinx pathogenesis and to potential future treatments. This is tackled first from an anatomical approach, covering the biochemistry of the blood-CSF barrier, the central canal, ependyma, tanycytes, astrocytes, neurotransmitters, aquaporins and the arterial and venous circulation. The biochemistry of relevant pathological processes is then addressed, including the inflammatory response, ischaemia, cellular adenosine triphosphate, necrosis and apoptosis, oedema and histopathological changes.

With Marcus Stoodley

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An intermediate filament protein that is expressed in dividing neural cells and may have a role in the radial growth of axons. Nestin protein expression is used as a marker of neural stem cells.

  2. 2.

    Glial fibrillary acidic protein is an intermediate filament that is expressed by astrocytes and ependymal cells and thought to be part of the cell cytoskeleton. As well as structural support, GFAP has a role in mitosis, cell to cell communication and repair after CNS injury. Normal astrocytes have GFAP labelling, although this may alter after an insult (hypoxia, inflammation, injury, etc.).

  3. 3.

    Hypoxia-induced factor 1a is a transcription factor, one of a group of hypoxia-inducible factors that respond to a reduction in the available oxygen in the tissues. Hypoxia-inducible factors are known to mediate the cell response to hypoxia, including stopping differentiation and stimulating the formation of new blood vessels.

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552

    CAS  PubMed  Google Scholar 

  • Aboulker J (1979) La syringomyelie et les liquides intra-rachidiens. Neurochirurgie 25(Suppl 1):1–44

    Google Scholar 

  • Aghayev K, Bal E, Rahimli T et al (2011) Expression of water channel aquaporin-4 during experimental syringomyelia: laboratory investigation. J Neurosurg Spine 15(4):428–432

    PubMed  Google Scholar 

  • Aito H, Aalto KT, Raivio KO (2002) Biphasic ATP depletion caused by transient oxidative exposure is associated with apoptotic cell death in rat embryonal cortical neurons. Pediatr Res 52:40–45

    CAS  PubMed  Google Scholar 

  • Anderson DK, Means ED, Waters TR (1980) Spinal cord energy metabolism in normal and postlaminectomy cats. J Neurosurg 52:387–391

    CAS  PubMed  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    CAS  PubMed  Google Scholar 

  • Badaut J (2009) Aquaglyceroporin 9 in brain pathologies. Neuroscience 168(4):1047–1057. doi:10.1016/j.neuroscience.2009.10.030

    PubMed  Google Scholar 

  • Batzdorf U, Klekamp J, Johnson JP (1998) A critical appraisal of syrinx cavity shunting procedures. J Neurosurg 89:382–388

    CAS  PubMed  Google Scholar 

  • Bilston LE, Fletcher DF, Brodbelt AR et al (2003) Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Engin 6(4):235–241

    PubMed  Google Scholar 

  • Blank WF Jr, Kirshner HS (1977) The kinetics of extracellular potassium changes during hypoxia and anoxia in the cat cerebral cortex. Brain Res 123(1):113–124

    CAS  PubMed  Google Scholar 

  • Bogdanov EI, Mendelevich EG (2002) Syrinx size and duration of symptoms predict the pace of progressive myelopathy: retrospective analysis of 103 unoperated cases with craniocervical junction malformations and syringomyelia. Clin Neurol Neurosurg 104:90–97

    CAS  PubMed  Google Scholar 

  • Bonkowski D, Katyshev V, Balabanov RD et al (2011) The CHS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8:8. doi:10.1186/2045-8118-8-8

    PubMed Central  PubMed  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brodbelt AR (2003) Investigations in posttraumatic syringomyelia. PhD Thesis. University of New South Wales, Sydney. Available at: http://handle.unsw.edu.au/1959.4/19317

  • Brodbelt AR, Stoodley MA (2007) CSF pathways: a review. Br J Neurosurg 21(5):510–520

    CAS  PubMed  Google Scholar 

  • Brodbelt AR, Stoodley MA, Watling A et al (2003a) The role of excitotoxic injury in post-traumatic syringomyelia. J Neurotrauma 20(9):883–893

    PubMed  Google Scholar 

  • Brodbelt AR, Stoodley MA, Watling AM et al (2003b) Fluid flow in an animal model of post-traumatic syringomyelia. Eur Spine J 12(3):300–306

    PubMed Central  PubMed  Google Scholar 

  • Brodbelt AR, Stoodley MA, Jones NR (2005) Non traumatic syringomyelia. In: The Cervical Spine Research Society Editorial Committee (ed) The cervical spine, 4th edn. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  • Brown PD, Davies SL, Speake T et al (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129(4):957–970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41:2–13

    CAS  PubMed  Google Scholar 

  • Bruni JE, Reddy K (1987) Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study. J Anat 152:55–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan LR, Norohna AB, Amico LL (1990) Syringomyelia and arachnoiditis. J Neurol Neurosurg Psychiatry 53:106–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charcot JM, Joffroy A (1869) Deux cas d’atrophie musculaire progressive avec lésions de la substance grise et des faisceaux antérolatéraux de la moelle épinière. Arch Physiol Neurol Pathol 2:354–367, 629–649, 744–760

    Google Scholar 

  • Cifuentes M, Fernandez-LLebrez P, Perez J et al (1992) Distribution of intraventricularly injected horseradish peroxidase in cerebrospinal fluid compartments of the rat spinal cord. Cell Tissue Res 270(3):485–494

    CAS  PubMed  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    CAS  PubMed  Google Scholar 

  • Davis CH, Symon L (1989) Mechanisms and treatment in post-traumatic syringomyelia. Br J Neurosurg 3:669–674

    CAS  PubMed  Google Scholar 

  • Davson H, Segal MB (1996) Physiology of the CSF and blood brain barriers. CRC Press, Boca Raton

    Google Scholar 

  • Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13

    PubMed  Google Scholar 

  • Ding JY, Kreipke CW, Speirs SL et al (2009) Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci Lett 453(1):68–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durward QJ, Rice GP, Ball MJ et al (1982) Selective spinal cordectomy: clinicopathological correlation. J Neurosurg 56:359–367

    CAS  PubMed  Google Scholar 

  • Edgar R, Quail P (1994) Progressive post-traumatic cystic and non-cystic myelopathy. Br J Neurosurg 8:7–22

    CAS  PubMed  Google Scholar 

  • Edsbagge M, Tisell M, Jacobsson L, Wikkelso C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol 287(6):R1450–R1455

    CAS  PubMed  Google Scholar 

  • Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    CAS  PubMed  Google Scholar 

  • Eklof B, Siesjo BK (1972) The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand 86:155–165

    CAS  PubMed  Google Scholar 

  • Elkinton JR, Donowski TS (1955) Body fluid dynamics. In: The body fluids: basic physiology and practical therapeutics. Williams and Wilkins, Baltimore

    Google Scholar 

  • Enerson BE, Drewes LR (2006) The rat blood brain barrier transcriptome. J Cereb Blood Flow Metab 26:959–973

    CAS  PubMed  Google Scholar 

  • Fischbein NJ, Dillon WP, Cobbs C et al (1999) The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol 20:7–20

    CAS  PubMed  Google Scholar 

  • Foldi M (1999) The brain and the lymphatic system revisited. Lymphology 32:40–44

    CAS  PubMed  Google Scholar 

  • Foo D, Bignami A, Rossier AB (1989) A case of post-traumatic syringomyelia. Neuropathological findings after 1 year of cystic drainage. Paraplegia 27:63–69

    CAS  PubMed  Google Scholar 

  • Freeman G (1959) Ascending spinal paralysis. J Neurosurg 16:120–122

    CAS  PubMed  Google Scholar 

  • Freeman LW, Wright TW (1953) Experimental observations of concussion and contusion of the spinal cord. Ann Surg 137:433–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganong WF (1995) Review of medical physiology. Prentice Hall International Inc, London

    Google Scholar 

  • Giller CA, Finn SS (1989) Intraoperative measurement of spinal cord blood velocity using pulsed Doppler ultrasound. A Case report. Surg Neurol 32:387–393

    CAS  PubMed  Google Scholar 

  • Guizar-Sahagun G, Grijalva I, Madrazo I et al (1994) Development of post-traumatic cysts in the spinal cord of rats-subjected to severe spinal cord contusion. Surg Neurol 41:241–249

    CAS  PubMed  Google Scholar 

  • Gunnarson E, Zelenina M, Aperia A (2004) Regulation of brain aquaporins. Neuroscience 129(4):947–955

    CAS  PubMed  Google Scholar 

  • Hamilton LK, Truong MKV, Bednarczyk MR et al (2009) Cellular organisation of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056

    CAS  PubMed  Google Scholar 

  • Hashizume Y, Iljima S, Kishimoto H et al (1983) Pencil-shaped softening of the spinal cord. Pathologic study in 12 autopsy cases. Acta Neuropathol 61:219–224

    CAS  PubMed  Google Scholar 

  • Hemley SJ, Biotech B, Tu J et al (2009) Role of the blood-spinal cord barrier in posttraumatic syringomyelia. J Neurosurg Spine 11(6):696–704

    PubMed  Google Scholar 

  • Hemley SJ, Bilston LE, Cheng S et al (2012) Aquaporin-4 expression and blood spinal cord barrier permeability in canalicular syringomyelia. J Neurosurg Spine 17:602–612

    PubMed  Google Scholar 

  • Hirose G, Shimazaki K, Takado M et al (1980) Intramedullary spinal cord metastasis associated with pencil-shaped softening of the spinal cord: case report. J Neurosurg 52:718–721

    CAS  PubMed  Google Scholar 

  • Honda T, Yokota S, Gang FG et al (1999) Evidence for the c-ret protooncogene product (c-Ret) expression in the spinal tanycytes of adult rat. J Chem Neuroanat 17:163–168

    CAS  PubMed  Google Scholar 

  • Hu HZ, Rusbridge C, Constantino-Casas F et al (2012a) Distribution of substance P and calcitonin gene-related peptide in the spinal cord of Cavalier King Charles Spaniels affected by symptomatic syringomyelia. Res Vet Sci 93(1):318–320. doi:10.1016/j.rvsc.2011.08.012

    CAS  PubMed  Google Scholar 

  • Hu HZ, Rusbridge C, Constantino-Casas F et al (2012b) Histopathological investigation of syringomyelia in the Cavalier King Charles spaniel. J Comp Pathol 146:192–201. doi:10.1016/j.jcpa.2011.07.002

    CAS  PubMed  Google Scholar 

  • Iskandar BJ, Oakes WJ, McLaughlin C et al (1994) Terminal syringohydromyelia and occult spinal dysraphism. J Neurosurg 81:513–519

    CAS  PubMed  Google Scholar 

  • Jinkins JR, Reddy S, Leite CC et al (1998) MR of parenchymal spinal cord signal change as a sign of active advancement in clinically progressive posttraumatic syringomyelia. AJNR Am J Neuroradiol 19:177–182

    CAS  PubMed  Google Scholar 

  • Jones HC (2004) Cerebrospinal fluid research: a new platform for dissemination of research, opinions and reviews with a common theme. Cerebrospinal Fluid Res 1(1):1

    PubMed Central  PubMed  Google Scholar 

  • Kahler RJ, Knuckey NW, Davis S (2000) Arachnoiditis ossificans and syringomyelia: a unique case report. J Clin Neurosci 7:66–68

    CAS  PubMed  Google Scholar 

  • Kakulas BA (1987) The clinical neuropathology of spinal cord injury. A guide to the future. Paraplegia 25:212–216

    CAS  PubMed  Google Scholar 

  • Kakulas BA (1999) A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 22:119–124

    CAS  PubMed  Google Scholar 

  • Kao TCC, Chang LW (1977) The mechanism of spinal cord cavitation following spinal cord transection. J Neurosurg 46:197–209

    Google Scholar 

  • Kass GE, Eriksson JE, Weis M et al (1996) Chromatin condensation during apoptosis requires ATP. Biochem J 318(Pt 3):749–752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kida S, Weller RO, Zhang ET et al (1995) Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol Appl Neurobiol 21:181–184

    CAS  PubMed  Google Scholar 

  • Kiernan JA (1998) Barr’s the human nervous system, an anatomical viewpoint, 7th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Kim RC (1993) Spinal cord pathology. In: Nelson JS, Parisi JE, Schochet SSJ (eds) Principles and practice of neuropathology. Mosby, St Louis, pp 398–435

    Google Scholar 

  • Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129:851–860

    CAS  PubMed  Google Scholar 

  • Kjeldsberg CR, Knight JA (1986) Cerebrospinal fluid, in body fluids: laboratory examination of amniotic, cerebrospinal, seminal, serous and synovial fluids: a textbook atlas. American society of clinical pathologists, Chicago

    Google Scholar 

  • Klekamp J (2002) The pathophysiology of syringomyelia – historical overview and current concept. Acta Neurochir (Wien) 144:649–664

    CAS  Google Scholar 

  • Klekamp J, Samii M (2002) Syringomyelia: diagnosis and management. Springer, Berlin

    Google Scholar 

  • Klekamp J, Batzdorf U, Samii M et al (1997) Treatment of syringomyelia associated with arachnoid scarring caused by arachnoiditis or trauma. J Neurosurg 86:233–240

    CAS  PubMed  Google Scholar 

  • Klekamp J, Volkel K, Bartels CJ et al (2001) Disturbances of cerebrospinal fluid flow attributable to arachnoid scarring cause interstitial edema of the cat spinal cord. Neurosurgery 48:174–185

    CAS  PubMed  Google Scholar 

  • Kohn MI, Tanna NK, Herman GT et al (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging. Part I. Methods, reliability, and validation. Radiology 178(1):115–122

    CAS  PubMed  Google Scholar 

  • Koyanagi I, Tator CH, Lea PJ (1993) Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 1: normal spinal cord. Neurosurgery 33:277–283

    CAS  PubMed  Google Scholar 

  • Kratz A, Lewandrowski KB (1998) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values. N Engl J Med 339:1063–1072

    CAS  PubMed  Google Scholar 

  • Laha RK, Malik HG, Langille RA (1975) Post-traumatic syringomyelia. Surg Neurol 4:519–522

    CAS  PubMed  Google Scholar 

  • Leist M, Kuhnle S, Single B et al (1998) Differentiation between apoptotic and necrotic cell death by means of the BM cell death detection ELISA or Annexin V staining. Biochemica 2:25–28

    Google Scholar 

  • Leonhardt H, Desaga U (1975) Recent observations on ependyma and subependymal basement membranes. Acta Neurochir (Wien) 31(3–4):153–159

    CAS  Google Scholar 

  • Levy EI, Heiss JD, Kent MS et al (2000) Spinal cord swelling preceding syrinx development. Case report. J Neurosurg 92:93–97

    CAS  PubMed  Google Scholar 

  • Li S, Tator CH (2000) Action of locally administered NMDA and AMPA/kainate receptor antagonists in spinal cord injury. Neurol Res 22:171–180

    CAS  PubMed  Google Scholar 

  • Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274:F315–F327

    CAS  PubMed  Google Scholar 

  • Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547:344–348

    CAS  PubMed  Google Scholar 

  • Malek SA, Coderre E, Stys PK (2003) Aberrant chloride transport contributes to anoxic/ischemic white matter injury. J Neurosci 23(9):3826–3836

    CAS  PubMed  Google Scholar 

  • Marsala M, Sorkin LS, Yaksh TL (1994) Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J Cereb Blood Flow Metab 14:604–614

    CAS  PubMed  Google Scholar 

  • McLaurin RL, Bailey OT, Schurr PH et al (1954) Myelomalacia and multiple cavitations of spinal cord secondary to adhesive arachnoiditis. Arch Pathol 57:138–146

    CAS  Google Scholar 

  • Milhorat TH (2000) Classification of syringomyelia. Neurosurg Focus 8:1–6

    Google Scholar 

  • Milhorat TH, Kotzen RM (1994) Stenosis of the central canal of the spinal cord following inoculation of suckling hamsters with reovirus type I. J Neurosurg 81:103–106

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Kotzen RM, Anzil AA (1994) Stenosis of the central canal of the spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80:716–722

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Capocelli AL Jr, Anzil AP et al (1995) Pathological basis of spinal cord cavitation in syringomyelia: analysis of 105 autopsy cases. J Neurosurg 82:802–812

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Kotzen RM, Capocelli AL Jr et al (1996) Intraoperative improvement of somatosensory evoked potentials and local spinal cord blood flow in patients with syringomyelia. J Neurosurg Anesthesiol 8:208–215

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Capocelli AL Jr, Kotzen RM et al (1997) Intramedullary pressure in syringomyelia: clinical and pathophysiological correlates of syrinx distension. Neurosurgery 41:1102–1110

    CAS  PubMed  Google Scholar 

  • Nesic O, Guest JD, Zivadinovic D et al (2010) Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 168(4):1019–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuwelt EA, Bauer B, Fahlke C et al (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogues MA (1987) Syringomyelia and syringobulbia. Handb Clin Neurol 6(50):443–464

    Google Scholar 

  • Nolte J (1999) The human brain: an introduction to its functional anatomy. Mosby, St Louis

    Google Scholar 

  • Nurick S, Russell JA, Deck MD (1970) Cystic degeneration of the spinal cord following spinal cord injury. Brain 93:211–222

    CAS  PubMed  Google Scholar 

  • Oshio K, Binder DK, Yang B et al (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127:685–693

    CAS  PubMed  Google Scholar 

  • Panter SS, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 27:96–99

    CAS  PubMed  Google Scholar 

  • Papadea C, Schlosser RJ (2005) Rapid method for beta2-transferrin in cerebrospinal fluid leakage using an automated immunofixation electrophoresis system. Clin Chem 51(2):464–470

    CAS  PubMed  Google Scholar 

  • Reddy KK, Del Bigio MR, Sutherland GR (1989) Ultrastructure of the human posttraumatic syrinx. J Neurosurg 71:239–243

    CAS  PubMed  Google Scholar 

  • Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56(12):1695–1716

    CAS  PubMed  Google Scholar 

  • Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439

    CAS  PubMed  Google Scholar 

  • Richter C, Schweizer M, Cossarizza A et al (1996) Control of apoptosis by the cellular ATP level. FEBS Lett 378:107–110

    CAS  PubMed  Google Scholar 

  • Rosenberg GA (1990) Brain fluids and metabolism. Oxford University Press, Oxford

    Google Scholar 

  • Rossier AB, Foo D, Shillito J et al (1985) Posttraumatic cervical syringomyelia. Incidence, clinical presentation, electrophysiological studies, syrinx protein and results of conservative and operative treatment. Brain 108:439–461

    PubMed  Google Scholar 

  • Schlesinger EB, Antunes JL, Michelsen WJ et al (1981) Hydromyelia: clinical presentation and comparison of modalities of treatment. Neurosurgery 9:356–365

    CAS  PubMed  Google Scholar 

  • Shima K (2003) Hydrostatic brain edema: basic mechanisms and clinical aspect. Acta Neurochir Suppl 86:17–20

    CAS  PubMed  Google Scholar 

  • Shiraishi J, Tatsumi T, Keira N et al (2001) Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 281:H1637–H1647

    CAS  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E et al (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39:115–123

    PubMed  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1990) Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res 15:635–639

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  • Solenov EI, Vetrivel L, Oshio K et al (2002) Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice. J Neurosci Methods 113(1):85–90

    CAS  PubMed  Google Scholar 

  • Squier MV, Lehr RP (1994) Post-traumatic syringomyelia. J Neurol Neurosurg Psychiatry 57:1095–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    CAS  PubMed  Google Scholar 

  • Stoodley MA, Jones NR (1998) Syringomyelia. In: The Cervical Spine Research Society Editorial Committee (ed) The cervical spine. Lippincott-Raven Publishers, Philadelphia, pp 565–583

    Google Scholar 

  • Stoodley MA, Jones NR, Brown CJ (1996) Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res 707:155–164

    CAS  PubMed  Google Scholar 

  • Stoodley MA, Gutschmidt B, Jones NR (1999) Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia. Neurosurgery 44:1065–1075

    CAS  PubMed  Google Scholar 

  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26

    CAS  PubMed  Google Scholar 

  • Taylor DL, Edwards AD, Mehmet H (1999) Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 9:93–117

    CAS  PubMed  Google Scholar 

  • Thron AK (1988) Vascular anatomy of the spinal cord: neuroradiological investigations and clinical syndromes. Springer, New York

    Google Scholar 

  • Tjandra JJ, Varma TR, Weeks RD (1989) Spinal arachnoiditis following subarachnoid haemorrhage. Aust N Z J Surg 59:84–87

    CAS  PubMed  Google Scholar 

  • Todor DR, Mu HT, Milhorat TH (2000) Pain and syringomyelia: a review. Neurosurg Focus 8(3):E11

    CAS  PubMed  Google Scholar 

  • Tveten L (1976a) Spinal cord vascularity III. The spinal cord arteries in man. Acta Radiol Diagn (Stockh) 17:257–273

    CAS  Google Scholar 

  • Tveten L (1976b) Spinal cord vascularity IV. The spinal cord arteries in the rat. Acta Radiol Diagn (Stockh) 17:385–398

    CAS  Google Scholar 

  • Urca G, Urca R (1990) Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-D-aspartate induce permanent neural damage. Brain Res 529:7–15

    CAS  PubMed  Google Scholar 

  • Urushitani M, Shimohama S, Kihara T et al (1998) Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection. Ann Neurol 44:796–807

    CAS  PubMed  Google Scholar 

  • Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid: a review. Cerebrospinal Fluid Res. http://cerebrospinalfluidresearch.com/content/7/1/1. Accessed 21 May 2012

  • Wagner FC, VanGilder JC, Dohrmann GJ (1978) Pathological changes from acute to chronic in experimental spinal cord trauma. J Neurosurg 48:92–98

    PubMed  Google Scholar 

  • Watkins JC (2000) l-glutamate as a central neurotransmitter: looking back. Biochem Soc Trans 28:297–309

    CAS  PubMed  Google Scholar 

  • Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57:885–894

    CAS  PubMed  Google Scholar 

  • Whittaker DE, English K, McGonnell IM et al (2011) Evaluation of cerebrospinal fluid in Cavalier King Charles Spaniel dogs diagnosed with Chiari-like malformation with or without concurrent syringomyelia. J Vet Diagn Invest 23:302–307

    PubMed  Google Scholar 

  • Williams B (1980) On the pathogenesis of syringomyelia: a review. J R Soc Med 73:798–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong J, Hemley S, Jones N et al (2012) Fluid outflow in a large-animal model of posttraumatic syringomyelia. Neurosurgery 71(2):474–480. doi:10.1227/NEU.0b013e31825927d6; discussion 480

    PubMed  Google Scholar 

  • Yang L, Jones NR, Stoodley MA et al (2001) Excitotoxic model of post-traumatic syringomyelia in the rat. Spine 26:1842–1849

    CAS  PubMed  Google Scholar 

  • Yang B, Zador Z, Verkman AS (2008) Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem 283(22):15280–15286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasui K, Hashizume Y, Yoshida M et al (1999) Age-related morphologic changes in the central canal of the human spinal cord. Acta Neuropathol 97:253–259

    CAS  PubMed  Google Scholar 

  • Yezierski RP, Sanata M, Park SH et al (1993) Neuronal degeneration and spinal cavitation following intraspinal injections of quisqualic acid in the rat. J Neurotrauma 10:445–456

    CAS  PubMed  Google Scholar 

  • Young WF, Tuma R, O’Grady T (2000) Intraoperative measurement of spinal cord blood flow in syringomyelia. Clin Neurol Neurosurg 102:119–123

    CAS  PubMed  Google Scholar 

  • Zador Z, Stiver A, Wang V et al (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190:159–170

    CAS  PubMed  Google Scholar 

  • Zhang Z, Krebs CJ, Guth L (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143:141–152

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang YP, Shields LB et al (2012) Cervical central canal occlusion induces noncommunicating syringomyelia. Neurosurgery 71:126–137

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Brodbelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brodbelt, A. (2014). The Biochemistry of Syringomyelia. In: Flint, G., Rusbridge, C. (eds) Syringomyelia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13706-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13706-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72484-1

  • Online ISBN: 978-3-642-13706-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics