Regular Strong Itô Approximations

  • Eckhard PlatenEmail author
  • Nicola Bruti-Liberati
Part of the Stochastic Modelling and Applied Probability book series (SMAP, volume 64)


In this chapter we describe strong approximations on a regular time discretization that are more general than the regular strong Taylor approximations presented in the previous chapter. These approximations belong to the class of regular strong Itô schemes, which includes derivative-free, implicit and predictor-corrector schemes. More details on some of the results to be presented in this chapter can be found in Bruti-Liberati, Nikitopoulos-Sklibosios & Platen (2006) and Bruti-Liberati & Platen (2008).


Gaussian Random Variable Implicit Scheme Multiplicative Noise Euler Scheme Strong Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruti-Liberati, N., Nikitopoulos-Sklibosios, C. & Platen, E. (2006). First order strong approximations of jump diffusions, Monte Carlo Methods Appl. 12(3-4): 191–209. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Bruti-Liberati, N. & Platen, E. (2008). Strong predictor-corrector Euler methods for stochastic differential equations, Stochastics and Dynamics 8(3): 561–581. zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Finance and Economics, Department of Mathematical SciencesUniversity of Technology, SydneyBroadwayAustralia

Personalised recommendations