Scale-Space Representation of Lung HRCT Images for Diffuse Lung Disease Classification

  • Kiet T. Vo
  • Arcot Sowmya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


A scale-space representation based on the Gaussian kernel filter and Gaussian derivatives filter is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. The mean, standard deviation, skew and kurtosis along with the Haralick measures of the filtered ROIs are computed as texture features. Support vector machines (SVMs) are used to evaluate the performance of the feature extraction scheme. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs from slices already marked by experienced radiologists. We employ this technique at different scales and different directions for diffuse lung disease classification. The technique presented here has best overall sensitivity of 84.6specificity of 92.3%.


HRCT diffuse lung disease texture classification scale-space feature extraction 


  1. 1.
    Webb, W.R., Muller, N.L., Naidich, D.P.: High-Resolution CT of the Lung. Lippincott Williams & Wilkins, Philadelphia (2001)Google Scholar
  2. 2.
    Materka, A., Strzelecki, M.: Texture Analysis Methods-A Review. Technical University of Lodz, Institute of Electronics, COSTB 11 report, Brussels (1998)Google Scholar
  3. 3.
    Uppaluri, R., Hoffman, E.A., Sonka, M., Hunninghake, G.W., McLennan, G.: Interstitial lung disease: A quantitative study using the adaptive multiple feature method. Am. J. Respir. Crit. Care Med. 159, 519–525 (1999)Google Scholar
  4. 4.
    Chabat, F., Yang, G.-Z., Hansell, D.M.: Obstructive lung diseases: texture classification for differentiation at CT. Radiology 228, 871–877 (2003)CrossRefGoogle Scholar
  5. 5.
    Uchiyama, Y., Katsuragawa, S., Abe, H., Shiraishi, J., Li, F., Li, Q., Zhang, C., Suzuki, K., Doi, K.: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med. Phys. 30, 2440–2454 (2003)CrossRefGoogle Scholar
  6. 6.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)zbMATHCrossRefGoogle Scholar
  7. 7.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE transactions on image processing 4, 1549–1560 (1995)CrossRefGoogle Scholar
  8. 8.
    Wouwer, G.V., Scheunders, P., Dyck, D.V.: Statistical texture characterization from discrete wavelet representations. IEEE Trans. Image Processing 8, 592–598 (1999)CrossRefGoogle Scholar
  9. 9.
    Shamsheyeva, A., Sowmya, A.: The anisotropic Gaussian kernel for SVM classification of HRCT images of the lung. In: Proc. Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 439–444 (2004)Google Scholar
  10. 10.
    Shojaii, R., Alirezaie, J., Babyn, P.: Automatic Segmentation of Abnormal Lung Parenchyma Utilizing Wavelet Transform. In: Alirezaie, J. (ed.) Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 1, pp. 1217–1220 (2007)Google Scholar
  11. 11.
    Tolouee, A., Abrishami-Moghaddam, H., Garnavi, R., Forouzanfar, M., Giti, M.: Texture Analysis in Lung HRCT Images. In: DICTA ’08 on Digital Image Computing: Techniques and Applications, pp. 305–311 (2008)Google Scholar
  12. 12.
    Depeursinge, A., Hidki, A., Platon, A., Poletti, P.-A., Unser, M., Muller, H.: Lung Tissue Classification Using Wavelet Frames. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale (2007)Google Scholar
  13. 13.
    Depeursinge, A., Iavindrasana, J., Cohen, G., Platon, A., Poletti, P.A., Muller, H.: Lung Tissue Classification in HRCT Data Integrating the Clinical Context. In: 21st IEEE International Symposium on CBMS ’08, Computer-Based Medical Systemspp. 542–547 (2008)Google Scholar
  14. 14.
    Depeursinge, A., Iavindrasana, J., Hidki, A., Cohen, G., Geissbuhler, A., Platon, A., Poletti, P.-A., Muller, H.: A classification framework for lung tissue categorization. In: SPIE (2008)Google Scholar
  15. 15.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions Image on Processing 14, 2091–2106 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gangeh, M., ter Haar Romeny, B., Eswaran, C.: Scale-Space Texture Classification Using Combined Classifiers, pp. 324-333 (2007)Google Scholar
  17. 17.
    ter Haar Romeny, B.M.: Front-End Vision and Multi-scale Image Analysis: Multi-scale Computer Vision Theory and Applications (Written in Mathematica). Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  18. 18.
    van Ginneken, B., Katsuragawa, S., ter Haar Romeny, B.M., Doi, K., Viergever, M.A.: Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans. Med. Imaging 21(2), 139–149 (2002)CrossRefGoogle Scholar
  19. 19.
    Gangeh, M.J., Duin, R.P.W., Eswaran, C., Haar Romeny, B.M.: Scale Space Texture Classification Using Combined Classifiers with Application to Ultrasound Tissue Characterization, pp. 287–290 (2007)Google Scholar
  20. 20.
    Haralick, R.M., Dinstein, I., Shanmugan, K.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-3, 610–621 (1973)Google Scholar
  21. 21.
    Miyamoto, E., Merryman, T.: Fast calculation of Haralick texture features (2008)Google Scholar
  22. 22.
    Depeursinge, A., Iavindrasana, J., Hidki, A., Cohen, G., Geissbuhler, A., Platon, A., Poletti, P.-A., Muller, H.: A classification framework for lung tissue categorization. In: SPIE, vol. 6919 (2008)Google Scholar
  23. 23.
    Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Kluwer Academic Publishers, Boston (1998)Google Scholar
  24. 24.
    Duan, K., Keerthi, S.S.: Which Is the Best Multiclass SVM Method? An Empirical Study: Multiple Classifier Systems, 278–285 (2005)Google Scholar
  25. 25.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982)zbMATHGoogle Scholar
  26. 26.
    Vo, K., Sowmya, A.: Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification. In: CAIP (2009)Google Scholar
  27. 27.
    Vo, K., Sowmya, A.: Diffuse Lung Disease Classification in HRCT Lung Images Using Generalized Gaussian Density Modeling of Wavelets Coefficients. In: IEEE International Conference on Image Processing, Cairo, Egypt (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kiet T. Vo
    • 1
  • Arcot Sowmya
    • 1
  1. 1.The University of New South WalesSydneyAustralia

Personalised recommendations