Plant Leaf Identification Using Color and Multi-scale Fractal Dimension

  • André R. Backes
  • Odemir M. Bruno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


The most extracted measures from plants are traditionally performed manually. This and the great biodiversity of species makes the taxonomical classification of plants a very complex and time-consuming task. In order to contribute to the plant species characterization, a novel approach based on color texture is proposed. Each color channel in a leaf texture is modeled as a surface, so the complexity in each channel, as well as in the interaction among these three color channels, can be measured using the Multi-scale fractal dimension. Results show the potential of this approach, which overcomes traditional color texture analysis methods, such as Chromaticity Moments and Gabor EEE descriptors.


plant identification complexity multi-scale fractal dimension color texture analysis 


  1. 1.
    Judd, W., Campbell, C., Kellog, E.A., Stevens, P.: Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Massachusetts (1999)Google Scholar
  2. 2.
    Kurmann, M.H., Hemsley, A.R.: The Evolution of Plant Architecture. Royal Botanic Gardens, Kew (1999)Google Scholar
  3. 3.
    Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)CrossRefGoogle Scholar
  4. 4.
    Murino, V., Ottonello, C., Pagnan, S.: Noisy texture classification: A higher-order statistics approach. Pattern Recognition 31(4), 383–393 (1998)CrossRefGoogle Scholar
  5. 5.
    Shen, L., Bai, L.: A review on gabor wavelets for face recognition. Pattern Anal. Appl. 9(2-3), 273–292 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bianconi, F., Fernández, A.: Evaluation of the effects of gabor filter parameters on texture classification. Pattern Recognition 40(12), 3325–3335 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  8. 8.
    Daugman, J., Downing, C.: Gabor wavelets for statistical pattern recognition. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 414–419. MIT Press, Cambridge (1995)Google Scholar
  9. 9.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)CrossRefGoogle Scholar
  10. 10.
    Azencott, R., Wang, J.P., Younes, L.: Texture classification using windowed fourier filters. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 148–153 (1997)CrossRefGoogle Scholar
  11. 11.
    Bajcsy, R.K.: Computer identification of visual surfaces. Computer Graphics Image Processing 2, 118–130 (1973)CrossRefGoogle Scholar
  12. 12.
    Sengür, A., Türkoglu, I., Ince, M.C.: Wavelet packet neural networks for texture classification. Expert Syst. Appl. 32(2), 527–533 (2007)CrossRefGoogle Scholar
  13. 13.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Processing 4(11), 1549–1560 (1995)CrossRefGoogle Scholar
  14. 14.
    Kaplan, L.M.: Extended fractal analysis for texture classification and segmentation. IEEE Transactions on Image Processing 8(11), 1572–1585 (1999)CrossRefGoogle Scholar
  15. 15.
    Backes, A.R., Bruno, O.M.: Plant leaf identification using multi-scale fractal dimension. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 143–150. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Huang, P.W., Dai, S.K., Lin, P.L.: Texture image retrieval and image segmentation using composite sub-band gradient vectors. J. Visual Communication and Image Representation 17(5), 947–957 (2006)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.Q., Bi, G.: On texture classification using fractal dimension. IJPRAI 13(6), 929–943 (1999)Google Scholar
  18. 18.
    de Plotze, R.O., Falvo, M., Pádua, J.G., Bernacci, L.C., Vieira, M.L.C., Oliveira, G.C.X., Bruno, O.M.: Leaf shape analysis using the multiscale minkowski fractal dimension, a new morphometric method: a study with passiflora (passifloraceae). Canadian Journal of Botany 83(3), 287–301 (2005)CrossRefGoogle Scholar
  19. 19.
    Li, J., Sun, C., Du, Q.: A new box-counting method for estimation of image fractal dimension. In: International Conference on Image Processing, pp. 3029–3032 (2006)Google Scholar
  20. 20.
    da F. Costa, L., Jr., R.M.C.: Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton (2000)Google Scholar
  21. 21.
    Carlin, M.: Measuring the complexity of non-fractal shapes by a fractal method. PRL: Pattern Recognition Letters 21(11), 1013–1017 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Schroeder, M.: Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise. W. H. Freeman, New York (1996)Google Scholar
  23. 23.
    Tricot, C.: Curves and Fractal Dimension. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  24. 24.
    Emerson, C.W., Lam, N.N., Quattrochi, D.A.: Multi-scale fractal analysis of image texture and patterns. Photogrammetric Engineering and Remote Sensing 65(1), 51–62 (1999)Google Scholar
  25. 25.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentic-Hall, New Jersey (2002)Google Scholar
  26. 26.
    Everitt, B.S., Dunn, G.: Applied Multivariate Analysis, 2nd edn. Arnold (2001)Google Scholar
  27. 27.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)zbMATHGoogle Scholar
  28. 28.
    Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn., Oxford (1986)Google Scholar
  29. 29.
    Paschos, G.: Fast color texture recognition using chromaticity moments. Pattern Recognition Letters 21(9), 837–841 (2000)CrossRefGoogle Scholar
  30. 30.
    Hoang, M.A., Geusebroek, J.M.: Measurement of color texture. In: Workshop on Texture Analysis in Machine Vision, pp. 73–76 (2002)Google Scholar
  31. 31.
    Hoang, M.A., Geusebroek, J.M., Smeulders, A.W.M.: Color texture measurement and segmentation. Signal Processing 85(2), 265–275 (2005)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • André R. Backes
    • 1
  • Odemir M. Bruno
    • 2
  1. 1.Instituto de Ciências Matemáticas e de Computação (ICMC)Universidade de São Paulo (USP)São CarlosBrazil
  2. 2.Instituto de Física de São Carlos (IFSC)Universidade de São Paulo (USP)São CarlosBrazil

Personalised recommendations