Advertisement

Classification of Multi-structured Documents: A Comparison Based on Media Image

  • Ali Idarrou
  • Driss Mammass
  • Chantal Soulé Dupuy
  • Nathalie Valles-Parlangeau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)

Abstract

This paper focuses on the structural comparison of multimedia documents. Most of the systems treating the multimedia documents exploit only the text part of these documents. However, the text is no longer the only means to carry information. The major issue is to extend these systems to the other modality notably to the image that constitutes one of the basic components of multimedia documents. The complexity of multimedia documents, multistructured in essence, imposes not only a structural representation in the form of trees, but rather in the form of graphs. The graphs are in appropriateness to the description of these documents. For example, one will be able to describe the components of a scene of an image, the relations between these components, their positions (spatial relations), etc.

We propose a new similarity measure of graphs, based on a univocal matching between the graphs to compare. In our approach, we will take account of structural information and specificities of multimedia information. We evaluate our measure on a corpus of multi-structured documents from the INEX 2007 corpus.

Keywords

Documents multimedia information image clustering classification similarity matching of graphs 

References

  1. 1.
    Idarrou, A., Soulé-Dupuy, C., Mammass, D., Vallès-Parlangeau, N.: Appariement et similarité des graphes. In: JDTIC’09 Journée doctorales en Technologie de l’Information et de la Communication Juillet 16-18, Rabat Maroc (2009)Google Scholar
  2. 2.
    Idarrou, A.: Classification des documents multi-structurés: comparaison de structures Ateliers Jeunes Chercheurs. In: CIFED 2010, Sousse Tunis, pp 501–506 (2010)Google Scholar
  3. 3.
    Mezghiche, A.A., Souam, F.: Classification de structures arborescentes: cas de documents XML. In: COREA 2009, 6th French Information Retrieval Conference, Proceeding of LSIS-USTV 2009, Presqu’île de Giens, France, May 5-7, pp. 301–317 (2009) ISBN 2-9524747-1-0Google Scholar
  4. 4.
    Régin, J.C.: Développement d’outils algorithmiques pour l’intelligence Artificielle. Application à la chimie orgnique. PhD thesis, Université de Montpellier II (1995)Google Scholar
  5. 5.
    Djemal, K., Dupuy, C.S., Valles-Parlangeau, N.: Modélisation d’un Entrepôt de Documents Multi-structurés Dans: ÉDIT 2007: actes du colloque des doctorants de l’École Doctorale Informatique et Télécommunications, Toulouse, May 24-25 (2007)Google Scholar
  6. 6.
    Mbarki, M.: Gestion de l’hétérogénéité documentaire: le cas d’un entrepôt de documents multimédias, thèse de doctorat de l’université de paul Sabatier, Toulouse (2008)Google Scholar
  7. 7.
    Torjmen, M., Pinel-Sauvagnat, K.: Une étude que l’impact de la structure sur la recherche multimédia. In: Conférence frnacophone en Recherche d’Information et Application (CORIA 2009), Presqu’île de Giens-Var, 05/05/2009-07/05/2009, Ludovia, mai 2009, pp. 51–66 (2009)Google Scholar
  8. 8.
    Champin, P.-A., Solnon, C.: Measuring the similarity of labeles graphs. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 80–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Sorlin, S., Champin, P.-A., Solnon, C.: Mesurer la similarité de graphes étiquetés: Dans 9èmes Journées Nationales sur la résolution pratique de problèmes NP-Complets. In: JNPC 2003, pp. 325–339 (2003)Google Scholar
  10. 10.
    Sorlin, S., Sammoud, O., Solnon, C., Jolin, J. M.: Mesurer la similarité de graphes: Dans Extraction de Connaissance à partir d’Images (ECOI 2006). In: Vincent, N., Lomenie, N. (eds.) Atelier de Extraction et Gestion de Connaissances (EGC 2006), Lille, pp. 21–30 (2006)Google Scholar
  11. 11.
    Jouili, S., Tabone, S.: Applications des graphes en traitement d’images. In: International Conference on Relations, Orders and Graphs: Interaction with Computer Science- ROGICS’08, Mahdia, Tunisia, pp. 434–442 (2008)Google Scholar
  12. 12.
    Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging, and its application to diatom idenfication. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    INEX 2007, Collection (same as old collection with Image IDs) (2007), http://www-connex.lip6.fr/~denoyer/wikipediaXML/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ali Idarrou
    • 1
    • 2
  • Driss Mammass
    • 2
  • Chantal Soulé Dupuy
    • 1
  • Nathalie Valles-Parlangeau
    • 1
  1. 1.IRIT, groupe SIGUniversité Paul SabatierToulouse cedex 9France
  2. 2.IRF – SIC Université Ibn Zohr Agadir Maroc 

Personalised recommendations