LMMSE-Based Image Denoising in Nonsubsampled Contourlet Transform Domain

  • Md. Foisal Hossain
  • Mohammad Reza Alsharif
  • Katsumi Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


This paper proposes a nonsubsampled contourlet transform (NSCT) based multiscale linear minimum mean square-error estimation (LMMSE) scheme for image denoising. The contourlet transform is a new extension of the wavelet transform that provides a multi-resolution and multi-direction analysis for two dimension images. The NSCT expansion is composed of basis images oriented at various directions in multiple scales, with flexible aspect ratios. Given this rich set of basis images, the NSCT transform effectively captures smooth contours that are the dominant feature in natural images. To investigate the strong interscale dependencies of NSCT, we combine pixels at the same spatial location across scales as a vector and apply LMMSE to the vector. Experimental results show that the proposed approach outperforms wavelet method and contourlet based method both visually and in terns of the peak signal to noise ratio (PSNR) values at most cases.




  1. 1.
    Donoho, D.L.: De-Noising by Soft Thresholding. IEEE Trans. Info. Theory 43, 933–936 (1993)MathSciNetGoogle Scholar
  2. 2.
    Grace Chang, S., Yu, B., Vattereli, M.: Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Trans. Image Processing 9, 1532–1546 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Donoho, D.L., Johnstone, I.M.: Adapting to Unknown Smoothness via Wavelet Shrinkage. Journal of American Statistical Assoc. 90(432), 1200–1224 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grace Chang, S., Yu, B., Vattereli, M.: Wavelet Thresholding for Multiple Noisy Image Copies. IEEE Trans. Image Processing 9, 1631–1635 (2000)CrossRefGoogle Scholar
  5. 5.
    Grace Chang, S., Yu, B., Vattereli, M.: Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising. IEEE Trans. Image Processing 9, 1522–1530 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Lang, M., Guo, H., Odegard, J.E.: Noise reduction Using Undecimated Discrete wavelet transform. IEEE Signal Processing Letters (1995)Google Scholar
  7. 7.
    Coifman, R.R., Donoho, L.D.: Translation Invariant De-noising. In: Antoniadis, A., Oppenheimm, G. (eds.) Wavelet and Statistics, pp. 125–150. Springer, Berlin (1995)Google Scholar
  8. 8.
    Bao, P., Zhang, L.: Noise Reduction for Magnetic Resonance Images via Adaptive multiscale Products Thresholding. IEEE Trans. Medical Imaging 22(9), 1089–1099 (2003)CrossRefGoogle Scholar
  9. 9.
    Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)zbMATHCrossRefGoogle Scholar
  10. 10.
    Romberg, J.K., Choi, H., Baraniuk, R.G.: Bayesian Tree-Structured Image Modeling Using Wavelet-Domain Hidden Markov Models. IEEE Trans. Image Proc. 10(7), 1056–1068 (2001)CrossRefGoogle Scholar
  11. 11.
    Crouse, M., Nowak, R.D., Baraniuk, R.G.: Wavelet-Based Signal Processing Using Hidden Markov Models. IEEE Trans. Signal Proc. 46, 886–902 (1998)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Wainwright, M.J., Simoncelli, E.P., Willsky, A.S.: Random Cascades on Wavelet Trees and Their Use in Modeling and Analyzing Natural Images. Journal of Appl. and Comput. Harmonic Analysis 11, 89–123 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Do, M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. commun. 31(4), 532–540 (1983)CrossRefGoogle Scholar
  15. 15.
    Do, M.N., Vetterli, M.: Framing pyramids. IEEE Trans. Signal Process. 51(9), 2329–2342 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Cunha, L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design and applications. IEEE Trans. Image Proc. 15(10), 3089–3101 (2006)CrossRefGoogle Scholar
  17. 17.
    Mihçak, M.K., Kozintsev, I., Ramchandran, K., Moulin, P.: Low Complexity Image Denoising Based on Statistical Modeling of Wavelet Coefficients. IEEE Signal Process. Lett. 6(12), 300–303 (1999)CrossRefGoogle Scholar
  18. 18.
    Li, X., Orchard, M.: Spatially Adaptive Image Denoising Under Overcomplete Expansion. In: Int. Conf. Image Process., Vancouver, Canada, pp. 300–303 (2000)Google Scholar
  19. 19.
    Zhang, L., Bao, P., Xiaolin, W.: Multiscale LMMSE-Based Image Denoising with Optimal Wavelet Selection. IEEE Trans. on Circuits and Systems for Video Technology 15(4), 469–481 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Md. Foisal Hossain
    • 1
  • Mohammad Reza Alsharif
    • 1
  • Katsumi Yamashita
    • 2
  1. 1.Department of Information EngineeringUniversity of the RyukyusOkinawaJapan
  2. 2.Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations