Non-linear EEG Analysis of Idiopathic Hypersomnia

  • Tarik Al-ani
  • Xavier Drouot
  • Thi Thuy Trang Huynh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


The electroencephalogram (EEG) signals are used to analyse and quantify the “depth” of sleep and its dynamic behaviour during night. In this work, we investigate a direct data-driven nonlinear and non-stationary quantitative analysis of sleep EEG issued from patients suffering from idopathic hypersomnia. We show that the minimum weighted average instantaneous frequency appears to be a specific intrinsic characteristic of brain function mechanism in these patients. It could be an interesting new parameter for the quantification of sleep.


Empirical Mode Decomposition Instantaneous Frequency Intrinsic Mode Function Healthy Female Deep Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Furukawax, T.: Heinrich Bruno Schindler’s description of narcolepsy in 1829. Neurology 37, 146 (1987)Google Scholar
  2. 2.
    Roth, B.: Narcolepsy and hypesomnia: review and classification of 642 personally observed cases. Schweiz Arch Neurol Neurochir Psychiatr 199(1), 31–41 (1975)Google Scholar
  3. 3.
    Kirsch, D.B., Chervin, R.D.: Idiopathic Hypersomnia and Reccurent Hypersomnia,plus 0.5em minus 0.4emSleep Disorders And Neurologic Diseases, ch. 9, 2nd edn. Antonio Culebras, New York (2007)Google Scholar
  4. 4.
    Borbely, A.A.: A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982)Google Scholar
  5. 5.
    American Academy of Sleep Medicine. In: ICSD-The International Classification of Sleep Disorders, 2nd edn. (2005)Google Scholar
  6. 6.
    Rechtschaffen, A., Kales, A.: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects,plus 0.5em minus 0.4em, Brain Inform. Service/Brain Res. Inst., Univ. California, Los Angeles (1968)Google Scholar
  7. 7.
    Penzel, T., Conradt, R.: Computer based sleep recording and analysis. Sleep Medicine Reviews 4(2), 131–148 (2000)CrossRefGoogle Scholar
  8. 8.
    Guilleminault, C., Kirisoglu, C., da Rosa, A.C., Lopes, C., Chan, A.: Sleepwalking, a disorder of NREM sleep instability. Sleep Medicine 7(2), 163–170 (2006)CrossRefGoogle Scholar
  9. 9.
    Preud’homme, X.A., Lanquart, J.P., Krystal, A.D., Bogaerts, P., Linkowsk, P.: Modeling slow-wave activity dynamics: does an exponentially dampened periodic function really fit a single night of normal human sleep? Clin. Neurophysiol. 119, 2753–2761 (2008)CrossRefGoogle Scholar
  10. 10.
    Sforza, E., Gaudreau, H., Petit, D., Montplaisir, J.: Homeostatic sleep regulation in patients with idiopathic hypersomnia. Clinical Neurophysiology 111, 277–282 (2000)CrossRefGoogle Scholar
  11. 11.
    Achermann, P., Borbely, A.A.: Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222 (1997)CrossRefGoogle Scholar
  12. 12.
    Amzica, F., Steriade, M.: Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 107, 69–83 (1998)CrossRefGoogle Scholar
  13. 13.
    Vyazovskiy, V.V., Achermann, P., Tobler, I.: Sleep homeostasis in the rat in the light and dark period. Brain Res. Bull. 74, 37–44 (2007)CrossRefGoogle Scholar
  14. 14.
    Campbell, G., Higgins, L.M., Darchia, N., Feinberg, I.: Homeostatic behavior of fast Fourier transform power in very low frequency non-rapid eye movement human electroencephalogram. Neuroscience 140, 1395–1399 (2006)CrossRefGoogle Scholar
  15. 15.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transaction on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)zbMATHCrossRefGoogle Scholar
  16. 16.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. of the Royal Society 454, 903–995 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ville, J.: Theorie et application de la notion de signal analytic. Cables et Transmissions 2A(1), 61–74 (1948); Translation by I. Selin, Theory and applications of the notion of complex signal, Report T-92, RAND Corporation, Santa Monica, CAGoogle Scholar
  18. 18.
    Carson, J., Fry, T.: Variable frequency electric circuit theory with application to the theory of frequency modulation. Bell System Tech. J. 16, 513–540 (1937)zbMATHGoogle Scholar
  19. 19.
    Gabor, D.: Theory of communication. Proc. IEE 93(III), 429–457 (1946)Google Scholar
  20. 20.
    Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal-Part 1. Proc. IEEE 80, 520–538 (1992)CrossRefGoogle Scholar
  21. 21.
    Ktonas, P.Y., Papp, N.: Instantaneous envelope and phase extraction from real signals: Theory, implementation and an application to EEG analysis. Signal Processing 2, 373–385 (1980)CrossRefGoogle Scholar
  22. 22.
    Huang, N.E., Shen, Z., Long, S.R.: A new review of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech. 31, 417–457 (1999)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Kaiser, J.F.: On a simple algorithm to calculate the ‘energy’ of a signal. In: Proc. of IEEE ICASSP 1990, Albuquerque, New Mexico, Avril 1990, pp. 381–384 (1990)Google Scholar
  24. 24.
    Maragos, P., Kaiser, J.F., Quatieri, T.F.: On separating amplitude from frequency modulations using energy operators. In: Proc. of IEEE ICASSP 90, vol. 2, pp. 1–4 (1992)Google Scholar
  25. 25.
    Maragos, P., Kaiser, J.F., Quatieri, T.F.: Energy separation in signal modulations with application to speech analysis. IEEE Trans. on Signal Processing 41(10), 3024–3051 (1993)zbMATHCrossRefGoogle Scholar
  26. 26.
    Maragos, P., Kaiser, J.F., Quatieri, T.F.: On amplitude and frequency demodulation using energy operators. IEEE Trans. on Signal Processing 41(4), 1532–1550 (1993)zbMATHCrossRefGoogle Scholar
  27. 27.
    Potamianos, A., Maragos, P.: A comparison of the energy operator and Hilbert transform approach to signal and speech demodulation. Sig. Proc. 37, 95–120 (1994)zbMATHCrossRefGoogle Scholar
  28. 28.
    Savitzky, A., Golay, M.J.E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry 36(8), 1627–1639 (1964)Google Scholar
  29. 29.
    Loughlin, P.J.: The time-dependent weighted average instantaneous frequency. In: Proc. IEEE Intl. Symp. Time-Frequency and Time-Scale Analysis, October 1998, pp. 97–100 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tarik Al-ani
    • 1
    • 2
  • Xavier Drouot
    • 3
    • 4
  • Thi Thuy Trang Huynh
    • 3
  1. 1.LISV-UVSQVélizyFrance
  2. 2.Dept. InformatiqueESIEE-Paris, Cité DescartesNoisy-Le-GrandFrance
  3. 3.Centre du SommeilAPHP, Hôpital Henri Mondor, Service de PhysiologieCréteilFrance
  4. 4.EA 4391, Université Paris 12France

Personalised recommendations