Advertisement

Grassland Species Characterization for Plant Family Discrimination by Image Processing

  • Mohamed Abadi
  • Anne-Sophie Capelle-Laizé
  • Majdi Khoudeir
  • Didier Combes
  • Serge Carré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)

Abstract

Pasture species belonging to poaceae and fabaceae families constitute of essential elements to maintain natural and cultivated regions. Their balance and productivity are key factors for good functioning of the grassland ecosystems. The study is based on a process of image processing. First of all an individual signature is defined while considering geometric characteristics of each family. Then, this signature is used to discriminate between these families.

Our approach focuses on the use of shape features in different situations. Specifically, the approach is based on cutting the representative leaves of each plant family. After cutting, we obtain leaves sections of different sizes and random geometry. Then, the shape features are calculated. Principal component analysis is used to select the most discriminatory features.

The results will be used to optimize the acquisition conditions. We have a discrimination rate of more than 90% for the experiments carried out in a controlled environment. Experiments are being carried out to extend this study in natural environments.

Keywords

shape features plant classification leaf recognition pasture poaceae and fabaceae family image processing 

References

  1. 1.
    Huygue, C., Bournoville, R., Couteaudier, Y., Duru, M.: Prairies et cultures fourragres en France : entre logiques de production et enjeux territoriaux. INRA (2005)Google Scholar
  2. 2.
    Leconte, D., Simon, J.: Diversit floristique des prairies Normandes Un patrimoine, un rle fonctionnel. Prairiales Normandie, Colloque du Robillard (2002)Google Scholar
  3. 3.
    Zaller, J.: Ecology and non-chemical-control of rumex crispus and r. obtusifolius (polygonaceae): a review. Weed research 44(6), 414–432 (2004)CrossRefGoogle Scholar
  4. 4.
    Gebhardt, S., Schellberg, J., Lock, R., Khbauch, W.: Identification of broad-leaved dock (rumex obtusifolius l.) on grassland by means of digital image processing. Precision Agriculture 7(3), 165–178 (2006)CrossRefGoogle Scholar
  5. 5.
    Himstedt, M., Fricke, T., Wachendorf, M.: Determining the contribution of legumes in legume-grass mixtures using digital image analysis. CROP Science 49, 1910–1916 (2009)CrossRefGoogle Scholar
  6. 6.
    Neto, N., Meyer, G., Jones, D., Samal, A.K.: Plant species identification using elliptic fourier leaf shape analysis. Computers and electronics in agriculture 50(2), 121–134 (2006)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Huang, D., Du, J., Huan, X., Heutte, L.: Classification of plant leaf images with complicated background. Applied mathematics and computation 205(2), 916–926 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Du, J.-X., Wang, X.-F., Gu, X.: Shape matching and recognition base on genetic algorithm and application to plant species identification. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 282–290. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Im, C., Nishida, H., Kunii, T.: Recognizing plant species by leaf shapes-a case study of the acer family. In: ICPR ’98: Proceedings of the 14th International Conference on Pattern Recognition, Washington, DC, USA, vol. 2, pp. 1171–1173. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  10. 10.
    Wang, Z., Chi, Z., Feng, D.: Fuzzy integral for leaf image retrieval. In: FUZZ-IEEE’02. Proceedings of the IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, vol. 1, pp. 372–377. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  11. 11.
    Plataniotis, K., Venetsanopoulos, A.: Color Image Processing and Applications. Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Cheng, H., Jiang, X., Sun, Y.: Color image segmentation: Advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Vandenbroucke, N., Macaire, L., Postaire, J.: Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis. Computer Vision and Image Understanding 90(2), 190–216 (2003)CrossRefGoogle Scholar
  14. 14.
    Yang, L., Yang, X.: Multi-object segmentation based on curve evolving and region division. Chin. J. Comput. 27(3), 420–425 (2004)Google Scholar
  15. 15.
    Du, J., Wang, X., Zhang, G.: Leaf shape based plant species recognition. Applied mathematics and computation 185(2), 883–893 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Wu, S., Bao, F., You Xu, E., Wang, Y., Chang, Y., Xiang, Q.: A leaf recognition algorithm for plant classification using probabilistic neural network. Computer Science Artificial Intelligence (2007)Google Scholar
  17. 17.
    Wang, X., Du, J., Zhang, G.: Recognition of leaf images based on shape features using a hypersphere classifier. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 87–96. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Duin, R.: A Matlab toolbox for pattern recognition Prtools version 3.0 a edn. (January 2000), http://www.ph.tn.tudelft.nl/prtools

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mohamed Abadi
    • 1
  • Anne-Sophie Capelle-Laizé
    • 1
  • Majdi Khoudeir
    • 1
  • Didier Combes
    • 2
  • Serge Carré
    • 2
  1. 1.Université de Poitiers, XLIM-SICFuturoscope-Chasseneuil
  2. 2.INRA Poitou-Charentes, UR4 P3FLusignanFrance

Personalised recommendations