Segmentation of Images of Lead Free Solder

  • Matthias Scheller Lichtenauer
  • Silvania Avelar
  • Grzegorz Toporek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


We present two approaches to segment metallic phases in images of lead free solder joints. We compare the results of a method without user interaction with another one extrapolating information from a relatively small set of user labeled pixels. The segmented images provide statistical data of spatial characteristics of phases to serve as input in numerical models of solder joints.


Support Vector Machine Solder Joint Lead Free Solder Composite Solder Segmentation Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sivasubramaniam, V., Galli, M., Cugnoni, J., Janczak-Rusch, J., Botsis, J.: A study of the shear response of a lead-free composite solder by experimental and homogenization techniques. Journal of Electronic Materials 38(10), 2122–2131 (2009)CrossRefGoogle Scholar
  2. 2.
    Sidhu, R.S., Chawla, N.: Three-dimensional (3D) visualization and microstructure-based modeling of deformation in a Sn-rich solder. Scripta Materialia 54(9), 1627–1631 (2006)CrossRefGoogle Scholar
  3. 3.
    Erinc, M., Assman, T., Schreurs, P., Geers, M.: Fatigue fracture of SnAgCu solder joints by microstructural modeling. International Journal of Fracture 152(1), 37–49 (2008)CrossRefGoogle Scholar
  4. 4.
    Kang, S.K., Choi, W.K., Shih, D., Henderson, D.W., Gosselin, T., Sarkhel, A., Goldsmith, C., Puttlitz, K.J.: Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu. JOM Journal of the Minerals, Metals and Materials Society 55(6), 61–65 (2003)Google Scholar
  5. 5.
    Ibrahim, A., Tominaga, S., Horiuchi, T.: Material classification for printed circuit boards by spectral imaging system. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW’09. LNCS, vol. 5646, pp. 216–225. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)zbMATHGoogle Scholar
  7. 7.
    Bruzzone, L., Carlin, L., Melgani, F.: A Multilevel Hierarchical Approach to Classification of High Spatial Resolution Images with Support Vector Machines. In: Proceedings of IGARSS, IEEE International Geoscience and Remote Sensing Symposium, pp. 540–543 (2004)Google Scholar
  8. 8.
    Jain, A.K.: Fundamentals of digital image processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  9. 9.
    Young, I.T., Zagers, R., van Vliet, L.J., Mullikin, J., Boddeke, F., Netten, H.: Depth-of-Focus in Microscopy. In: Proc. 8th Scandinavian Conference on Image Analysis, SCIA, Tromso, Norway, pp. 493–498 (1993)Google Scholar
  10. 10.
    Chapelle, O., Haffner, P., Vapnik, V.N.: Support Vector Machines for Histogram-Based Image Classfication. IEEE Transactions on Neural Networks 10(5) (1999)Google Scholar
  11. 11.
    Jian, M., Guo, H., Liu, L.: Texture image classification using visual perception texture features and Gabor wavelet features. Journal of Computers 4(8), 763–770 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthias Scheller Lichtenauer
    • 1
  • Silvania Avelar
    • 1
  • Grzegorz Toporek
    • 1
  1. 1.Laboratory of Media TechnologySwiss Federal Laboratories for Materials Testing and Research (EMPA)DuebendorfSwitzerland

Personalised recommendations