An Adaptive Method Using Genetic Fuzzy System to Evaluate Suspended Particulates Matters SPM from Landsat and Modis Data

  • Bahia Lounis
  • Sofiane Rabia
  • Adlene Ramoul
  • Aichouche Belhadj Aissa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


In this paper, we propose an optimization of fuzzy model which exploits remotely sensed multispectral reflectances to estimate Suspended Particulates Matters SPM concentrations in coastal waters. The relation between the SPM concentrations and the subsurface reflectances is modeled by a set of fuzzy rules extracted automatically from the data through two steps procedure. First, fuzzy rules are generated by unsupervised fuzzy clustering of the input data. In the second step, a genetic algorithm is applied to optimize the rules. Our contribution has focused on global and partial optimization of rules and a proposed chromosome structure adapted to remote sensing data. Results of the application of each type of optimization to Landsat and Modis data are shown and discussed.


Remote sensing data Coastal water quality SPM concentrations Fuzzy clustering Genetic optimization Chromosome codification 


  1. 1.
    Douillet, P., Ouillon, S., Cordier, E.: A numerical model for fine suspended transport in the southwest lagoon of new caledonia. Coral Reefs 20, 361–372 (2001)CrossRefGoogle Scholar
  2. 2.
    Stumpf, R.P., Pennock, J.R.: Calibration of a general optical equation for remote sensing of suspended sediments in a moderatly turbid estuary. Journal of Geophysical Research 94(C10), 14363–14371 (1989)CrossRefGoogle Scholar
  3. 3.
    Acker, J., Ouillon, S., Gould, R., Arnone, R.: Measuring Marine Suspended Sediment Concentrations from Space: History and Potential. In: 8th International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Canada, May 17-19 (2005)Google Scholar
  4. 4.
    Djellal, D., Lounis, B., Belhadj-Aissa, A.: Cartographie de la concentration des sédiments côtiers par imagerie satellitaire et étude des lidars bathymétriques. In: Journées d’Animation Scientifique (JAS’09) de l’AUF, Alger (Novembre 2009)Google Scholar
  5. 5.
    Cococcioni, M., Corsini, G., Lazzerini, B., Marcelloni, F.: Approaching the Ocean Color Problem Using Fuzzy Rules. IEEE Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics 34(3) (June 2004)Google Scholar
  6. 6.
    Lounis, B., Belhadj aissa, A., et al.: Processus de correction relative PCR des images satellitaires Landsat multidates. In: SETIT 2005, 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications, Tunisia, March 27-31 (2005)Google Scholar
  7. 7.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, NY (1981)zbMATHGoogle Scholar
  8. 8.
    Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with fuzzy covariance matrix. In: Gupta, M.M., Ragade, R.K., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 605–620. North-Holland, Amsterdam (1979)Google Scholar
  9. 9.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. System., Man, Cybern. SMC-15, 116–132 (1985)Google Scholar
  10. 10.
    Wei, W.: Synthèse d’un contrôleur flou par algorithme génétique: application au réglage dynamique des paramètres d’un système. Thèse de doctorat de l’université de Lille 1 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bahia Lounis
    • 1
  • Sofiane Rabia
    • 1
  • Adlene Ramoul
    • 1
  • Aichouche Belhadj Aissa
    • 1
  1. 1.Laboratory of image processing and radiation- Faculty of Electronics and Computer ScienceUSTHB UniversityAlgiersAlgeria

Personalised recommendations