Skip to main content

Ensemble Learning Based on Multi-Task Class Labels

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6119))

Included in the following conference series:

Abstract

It is well known that diversity among component classifiers is crucial for constructing a strong ensemble. Most existing ensemble methods achieve this goal through resampling the training instances or input features. Inspired by MTForest and AODE that enumerate each input attribute together with the class attribute to create different component classifiers in the ensemble. In this paper, we propose a novel general ensemble method based on manipulating the class labels. It generates different biased new class labels through the Cartesian product of the class attribute and each input attribute, and then builds a component classifier for each of them. Extensive experiments, using decision tree and naive Bayes as base classifier respectively, show that the accuracy of our method is comparable to state-of-the-art ensemble methods. Finally, the bias-variance decomposition results reveal that the success of our method mainly lies in that it can significantly reduce the bias of the base learner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, J.: A model for inductive bias learning. Journal of Artificial Intelligence Research 12(2), 149–198 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University of California, Dept. of C.S., http://www.ics.uci.edu.learn/MLRepository.html

  3. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Caruana, R.: Multi-task learning. Machine Learning 28(1), 41–75 (1997)

    Article  Google Scholar 

  6. Caruana, R., Sa, V.R.: Benefitting from the variables that variable selection discards. Journal of Machine Learning Research 3(2), 1245–1264 (2003)

    Article  MATH  Google Scholar 

  7. Demsar, J.: Statistical Comparison of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  8. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  9. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning, pp. 123–140 (1996)

    Google Scholar 

  11. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  12. Furnkranz, J.: Pairwise classification as an ensemble technique. In: Proceedings of the 13th European Conference on Machine Learning, pp. 97–110 (2002)

    Google Scholar 

  13. Goebel, M., Riddle, P.J., Barley, M.: A unified decomposition of ensemble loss for predicting ensemble performance. In: Proceedings of the 19th International Conference on Machine Learning, pp. 211–218 (2002)

    Google Scholar 

  14. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  15. Jiang, L., Zhang, H., Cai, Z.: A novel bayes model: hidden naive Bayes. IEEE Trans. Knowledge and Data Engineering 21(10), 1361–1371 (2009)

    Article  Google Scholar 

  16. Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: Proceedings of the 13th International Conf. on Machine Learning, pp. 275–283 (1996)

    Google Scholar 

  17. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley and Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  18. Li, N., Yu, Y., Zhou, Z.H.: Semi-naive exploitation of one-dependence estimators. In: Proceedings of the 9th IEEE International Conf. on Data Mining, pp. 278–287 (2009)

    Google Scholar 

  19. Wang, Q., Zhang, L., Chi, M.M., Guo, J.K.: MTForest: Ensemble decision trees based on multi-task learning. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 122–126 (2008)

    Google Scholar 

  20. Webb, G.I., Boughton, J., Wang, Z.: Not so naive bayes: Aggregating one-dependence estimators. Machine Learning 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  22. Zhou, Z.H., Wu, J.X., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1), 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Zhang, L. (2010). Ensemble Learning Based on Multi-Task Class Labels. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13672-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13672-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13671-9

  • Online ISBN: 978-3-642-13672-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics