Skip to main content

iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6118))

Abstract

Given a pairwise dissimilarity matrix D of a set of n objects, visual methods (such as VAT) for cluster tendency assessment generally represent D as an n×n image \(\mathrm{I}(\tilde{\bf D})\) where the objects are reordered to reveal hidden cluster structure as dark blocks along the diagonal of the image. A major limitation of such methods is the inability to highlight cluster structure in \(\mathrm{I}(\tilde{\bf D})\) when D contains highly complex clusters. To address this problem, this paper proposes an improved VAT (iVAT) method by combining a path-based distance transform with VAT. In addition, an automated VAT (aVAT) method is also proposed to automatically determine the number of clusters from \(\mathrm{I}(\tilde{\bf D})\). Experimental results on several synthetic and real-world data sets have demonstrated the effectiveness of our methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu, R., II, D.W.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Google Scholar 

  2. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  3. Hu, X., Xu, L.: A comparative study of several cluster number selection criteria. In: Liu, J., Cheung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 195–202. Springer, Heidelberg (2003)

    Google Scholar 

  4. Bezdek, J.C., Pal, N.R.: Some new indices of cluster validity. IEEE Transactions on System, Man and Cybernetics 28(3), 301–315 (1998)

    Article  Google Scholar 

  5. R. Tibshirani, G.W., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistics. Journal of the Royal Statistical Society. Series B, Statistical Methodology 63(2) (2001) 411–423

    MATH  MathSciNet  Google Scholar 

  6. Calinski, R.B., Harabasz, J.: A dendrite method for cluster analysis. Communications in Statistics 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  7. Dunn, J.C.: Indices of partition fuzziness and the detection of clusters in large sets. Fuzzy Automata and Decision Processes (1976)

    Google Scholar 

  8. Bezdek, J.C., Hathaway, R.J.: VAT: A tool for visual assement of (cluster) tendency. In: International Joint Conference on Neural Networks, vol. 3, pp. 2225–2230 (2002)

    Google Scholar 

  9. Tran-Luu, T.: Mathematical Concepts and Novel Heuristic Methods for Data Clustering and Visualization. PhD Thesis, University of Maryland, College Park, MD (1996)

    Google Scholar 

  10. Bezdek, J.C., Hathaway, R., Huband, J.: Visual assessment of clustering tendency for rectangular dissimilarity matrices. IEEE Transactions on Fuzzy Systems 15(5), 890–903 (2007)

    Article  Google Scholar 

  11. Hathaway, R., Bezdek, J.C., Huband, J.: Scalable visual assessment of cluster tendency. Pattern Recognition 39(7), 1315–1324 (2006)

    Article  MATH  Google Scholar 

  12. Wang, L., Geng, X., Bezdek, J., Leckie, C., Kotagiri, R.: SpecVAT: Enhanced visual cluster analysis. In: International Conference on Data Mining, pp. 638–647 (2008)

    Google Scholar 

  13. Huband, J., Bezdek, J.C., Hathaway, R.: bigVAT: Visual assessment of cluster tendency for large data sets. Pattern Recognition 38(11), 1875–1886 (2005)

    Article  Google Scholar 

  14. Ling, R.: A computer generated aid for cluster analysis. Communications of the ACM 16(6), 355–361 (1973)

    Article  Google Scholar 

  15. Rousseeuw, P.J.: A graphical aid to the interpretations and validation of cluster analysis. Journal of Computational and Applied Mathematics 20(1), 53–65 (1987)

    Article  MATH  Google Scholar 

  16. Sledge, I., Huband, J., Bezdek, J.C. (Automatic) cluster count extraction from unlabeled datasets. In: Joint International Conference on Natural Computation and International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 3–13 (2008)

    Google Scholar 

  17. Wang, L., Leckie, C., Kotagiri, R., Bezdek, J.: Automatically determining the number of clusters in unlabeled data sets. IEEE Transactions on Knowledge and Data Engineering 21(3), 335–350 (2009)

    Article  Google Scholar 

  18. Havens, T.C., Bezdek, J.C., Keller, J.M., Popescu, M.: Clustering in ordered dissimilarity data. International Journal of Intelligent Systems 24(5), 504–528 (2009)

    Article  MATH  Google Scholar 

  19. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14, 585–591 (2002)

    Google Scholar 

  20. Chung, F.: Spectral graph theory. In: CBMS Regional Conference Series in Mathematics, American Mathematical Society, vol. 92 (1997)

    Google Scholar 

  21. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Advances in Neural Information Processing Systems 17, 1601–1608 (2004)

    Google Scholar 

  22. Fisher, B., Zoller, T., Buhmann, J.: Path based pairwise data clustering with application to texture segmentation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 235–250. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Thayananthan, A., Stenger, B., Torr, P., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 127–133 (2003)

    Google Scholar 

  24. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  25. Barrow, H.G.: tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: Two new techniques for image matching. In: Intternational Joint Conference on Artificial Intelligence, vol. 2, pp. 659–663 (1977)

    Google Scholar 

  26. Breitenbach, M., Grudic, G.: Clustering through ranking on manifolds. In: International Conference on Machine Learning, vol. 119, pp. 73–80 (2005)

    Google Scholar 

  27. Pal, N., Keller, J., Popescu, M., Bezdek, J.C., Mitchell, J., Huband, J.: Gene ontology-based knowledge discovery through fuzzy cluster analysis. Journal of Neural, Parallel and Scientific Computing 13(3-4), 337–361 (2005)

    MATH  MathSciNet  Google Scholar 

  28. Wang, L., Leckie, C., Wang, X., Kotagiri, R., Bezdek, J.: Tensor space learning for analyzing activity patterns from video sequences. In: ICDM Workshop on Knowledge Discovery and Data Mining from Multimedia Data and Multimedia Applications, pp. 63–68 (2007)

    Google Scholar 

  29. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  30. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering with application to image segmentation. In: International Conference on Computer Vision, vol. 1, pp. 278–285 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Nguyen, U.T.V., Bezdek, J.C., Leckie, C.A., Ramamohanarao, K. (2010). iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13657-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13656-6

  • Online ISBN: 978-3-642-13657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics