Advertisement

Design and Implementation of a Robust Sensor Data Fusion System for Unknown Signals

  • Younghun Kim
  • Thomas Schmid
  • Mani B. Srivastava
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6131)

Abstract

In this work, we present a robust sensor fusion system for exploratory data collection, exploiting the spatial redundancy in sensor networks. Unlike prior work, our system design criteria considers a heterogeneous correlated noise model and packet loss, but no prior knowledge of signal characteristics. The former two assumptions are both common signal degradation sources in sensor networks, while the latter allows exploratory data collection of unknown signals. Through both a numerical example and an experimental study on a large military site, we show that our proposed system reduces the noise in an unknown signal by 58.2% better than a comparable algorithm.

Keywords

Exploratory Data Collection Robust Distributed Sensing Data Fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balzano, L., Nowak, R.: Blind calibration of sensor networks. In: IPSN (2007)Google Scholar
  2. 2.
    Bellman, R.: Dynamic Programming. Dover Publications, Mineola (2003)zbMATHGoogle Scholar
  3. 3.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analysis and applications. In: IEEE INFOCOM (2005)Google Scholar
  4. 4.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Press, Cambridge (2004)Google Scholar
  5. 5.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9 (1990)Google Scholar
  6. 6.
    Dimakis, A., Sarwate, A., Wainwright, M.: Geographic gossip: efficient aggregation for sensor networks. In: IPSN (2006)Google Scholar
  7. 7.
    Fischione, C., Speranzon, A., Johansson, K.H., Sangiovanni-Vincentelli, A.: Peer-to-peer estimation over wireless sensor networks via lipschitz optimization. In: IPSN (2009)Google Scholar
  8. 8.
    Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  9. 9.
    Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: SenSys (2003)Google Scholar
  10. 10.
    Kay, S.M.: Fundamentals of Statistical Signal Processing. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  11. 11.
    Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements: maximizing information while minimizing communication cost. In: IPSN (2006)Google Scholar
  12. 12.
    Mallat, S., Papanicolaou, G., Zhang, Z., Mallat, S.E.: Adaptive covariance estimation of locally stationary processes. Ann. Statist. 26, 1–47 (1995)MathSciNetGoogle Scholar
  13. 13.
    McDonough, R.N., Whalen, A.: Detection of Signals in Noise, 2nd edn. Academic Press, London (1995)Google Scholar
  14. 14.
    Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks: Methods, models and classifications. ACM Comput. Surv. 39(3), 9 (2007)CrossRefGoogle Scholar
  15. 15.
    Olfati-Saber, R., Shamma, J.: Consensus filters for sensor networks and distributed sensor fusion. In: IEEE CDC-ECC (2005)Google Scholar
  16. 16.
    Rao, N.: On fusers that perform better than best sensor. In: IEEE Trans. on PAMI (2001)Google Scholar
  17. 17.
    Rao, N., Oblow, E., Glover, C., Liepins, G.: N-learners problem: fusion of concepts. In: IEEE Trans. on Systems, Man and Cybernetics (1994)Google Scholar
  18. 18.
    Scharf, L.: Statistical Signal Processing. Prentice-Hall, Englewood Cliffs (1990)Google Scholar
  19. 19.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations. IEEE Trans. on Automatic Control (2004)Google Scholar
  20. 20.
    Speranzon, A., Fischione, C., Johansson, B., Johansson, K.: Adaptive distributed estimation over wireless sensor networks with packet losses. In: IEEE CDC (2007)Google Scholar
  21. 21.
    Speranzon, A., Fischione, C., Johansson, K., Sangiovanni-Vincentelli, A.: A distributed minimum variance estimator for sensor networks. IEEE Journal on Selected Areas in Communications (2008)Google Scholar
  22. 22.
    Xiao, L., Boyd, S., Kim, S.-J.: Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: IPSN (2005)Google Scholar
  24. 24.
    Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wireless sensor networks. In: SenSys (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Younghun Kim
    • 1
  • Thomas Schmid
    • 1
  • Mani B. Srivastava
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of CaliforniaLos Angeles

Personalised recommendations