Data Spider: A Resilient Mobile Basestation Protocol for Efficient Data Collection in Wireless Sensor Networks

  • Onur Soysal
  • Murat Demirbas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6131)


Traditional deployments of wireless sensor networks (WSNs) rely on static basestations to collect data. For applications with highly spatio-temporal and dynamic data generation, such as tracking and detection applications, static basestations suffer from communication bottlenecks and long routes, which cause reliability and lifetime to plummet. To address this problem, we propose a holistic solution where the synergy of the WSN and the mobile basestation improves the reliability and lifetime of data collection. The WSN component of our solution is a lightweight dynamic routing tree maintenance protocol which tracks the location of the basestation to provide an always connected network. The mobile basestation component of our solution complements the dynamic tree reconfiguration protocol by trailing towards the data generation, and hence, reducing the number of hops the data needs to travel to the basestation. While both protocols are simple and lightweight, combined they lead to significant improvements in the reliability and lifetime of data collection. We provide an analytical discussion of our solution along with extensive simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, A., et al.: Exscal: Elements of an extreme scale wireless sensor network. In: RTCSA (2005)Google Scholar
  2. 2.
    Azad, A., Chockalingam, A.: Mobile base stations placement and energy aware routing in wireless sensor networks. In: WCNC, vol. 1, pp. 264–269 (April 2006)Google Scholar
  3. 3.
    Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., Wang, Z.M.: Controlled sink mobility for prolonging wireless sensor networks lifetime. Wirel. Netw. 14(6), 831–858 (2008)CrossRefGoogle Scholar
  4. 4.
    Basagni, S., Carosi, A., Petrioli, C.: Heuristics for lifetime maximization in wireless sensor networks with multiple mobile sinks. In: IEEE International Conference on Communications, ICC 2009, June 2009, pp. 1–6 (2009)Google Scholar
  5. 5.
    Batalin, M., et al.: Call and response: experiments in sampling the environment. In: SenSys 2004, pp. 25–38 (2004)Google Scholar
  6. 6.
    Demirbas, M., Soysal, O., Tosun, A.S.: Data salmon: A greedy mobile basestation protocol for efficient data collection in wireless sensor networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 267–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Arora, A., et al.: A line in the sand: A wireless sensor network for target detection, classification and tracking. Computer Networks 46(5), 605–634 (2004)CrossRefGoogle Scholar
  8. 8.
    Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In: GLOBECOM, vol. 1, pp. 377–381 (December 2003)Google Scholar
  9. 9.
    Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., Lee, C.: Partitioning based mobile element scheduling in wireless sensor networks. In: SECON, pp. 386–395 (2005)Google Scholar
  10. 10.
    jen Hsu, W., Spyropoulos, T., Psounis, K., Helmy, A.: Modeling time-variant user mobility in wireless mobile networks. In: INFOCOM, pp. 758–766 (2007)Google Scholar
  11. 11.
    Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: INFOCOM, vol. 3, pp. 1735–1746 (2005)Google Scholar
  12. 12.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: SenSys, pp. 95–107 (2004)Google Scholar
  13. 13.
    Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: WSNPA, pp. 30–41 (2003)Google Scholar
  14. 14.
    Simon, G., Volgyesi, P., Maroti, M., Ledeczi, A.: Simulation-based optimization of communication protocols for large-scale wireless sensor networks. In: IEEE Aerospace Conference, pp. 255–267 (March 2003)Google Scholar
  15. 15.
    Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In: RTSS, pp. 296–305 (2004)Google Scholar
  16. 16.
    Szewczyk, R., Mainwaring, A., Polastre, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: SenSys (2004)Google Scholar
  17. 17.
    Zhang, W., Cao, G.: Dctc: Dynamic convoy tree-based collaboration for target tracking in sensor networks. IEEE Transactions on Wireless Communication 3(5), 1689–1701 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Onur Soysal
    • 1
  • Murat Demirbas
    • 1
  1. 1.Computer Science & Engineering Dept.University at Buffalo, SUNY 

Personalised recommendations