Advertisement

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks

  • Shane B. Eisenman
  • Hong Lu
  • Andrew T. Campbell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6131)

Abstract

One vision of an opportunistic sensor network (OSN) uses sensor access points (SAPs) to assign mobile sensors with sensing tasks submitted by applications that could be running anywhere. Tasked mobile sensors might upload sensed data back to these applications via subsequent encounters with this SAP tier. In a people-centric OSN, node mobility is uncontrolled and the architecture relies on opportunistic rendezvous between human-carried sensors and SAPs to provide tasking/uploading opportunities. However, in many reasonable scenarios application queries have a degree of time sensitivity such that the sensing target must be sampled and/or the resulting sensed data must be uploaded within a certain time window to be of greatest value. Halo efficiently, in terms of packet overhead and mobile sensor energy, provides improved delay performance in OSNs by: (i) managing tasking/uploading opportunity, and (ii) using mobility-informed scheduling at the SAP.

Keywords

Node Mobility Mobile Sensor Sphere Radius Interaction Radius Mobile Sensor Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, A., Kumar, P.R.: Capacity bounds for ad-hoc and hybrid wireless networks. ACM SIGCOMM CCR, Special Issue on Science of Networking Design 34(3), 71–81 (2004)Google Scholar
  2. 2.
    Bahl, P., Chandra, R., Lee, P.-C., Misra, V., Padhye, J., Rubenstein, D., Yu, Y.: Opportunistic Use of Client Repeaters to Improve Performance of WLANs. In: Proc. of ACM CoNEXT 2008, Madrid (December 2008)Google Scholar
  3. 3.
    Bahl, P., Hajiaghayi, M., Jain, K., Mirrokni, V., Qiu, L., Saberi, A.: Cell Breathing in Wireless LANs: Algorithms and Evaluation. IEEE Trans. on Mobile Computing 6(2) (February 2007)Google Scholar
  4. 4.
    Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R.: People-Centric Urban Sensing. In: Proc. WICON 2006, Boston (August 2006)Google Scholar
  5. 5.
    Chaintreau, A., Mtibaa, A., Massoulie, L., Diot, C.: The Diameter of Opportunistic Mobile Networks. In: Proc. of ACM CoNEXT 2007, New York (December 2007)Google Scholar
  6. 6.
    Chatterjee, M., Das, S.K., Targut, D.: WCA: A Weighted Clustering Algorithm for Mobile Ad hoc Networks. Journal of Cluster Computing (Special Issue on Mobile Ad hoc Networks) 5 (April 2002)Google Scholar
  7. 7.
    Du, S., et al.: Self-Organizing Hierarchical Routing for Scalable Ad Hoc Networking. ACM Ad Hoc Networks 6(4) (June 2008)Google Scholar
  8. 8.
    Eisenman, S.B., Campbell, A.T.: Managing Node Rendezvous is Opportunistic Sensor Networks. Tech. Report, http://www.ee.columbia.edu/~shane/halo.pdf
  9. 9.
    Haas, Z.J.: A New Routing Protocol for the Reconfigurable Wireless Networks. In: Proc. ICUPC 1997 (October 1997)Google Scholar
  10. 10.
    Hull, B., et al.: CarTel: A Distributed Mobile Sensor Computing System. In: Proc. of 4th ACM Int’l Conf. on Embedded Networked Sensor Systems, Boulder, pp. 125–138 (November 2006)Google Scholar
  11. 11.
    Laibowitz, M., Paradiso, J.A.: Parasitic Mobility for Pervasive Sensor Networks. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 255–278. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Miluzzo, E., Lane, N.D., Eisenman, S.B., Campbell, A.T.: CenceMe - Injecting Sensing Presence into Social Networking Applications. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds.) EuroSSC 2007. LNCS, vol. 4793, pp. 1–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Miluzzo, E., Zheng, X., Fodor, K., Campbell, A.T.: Radio Characterization of 802.15.4 and its Impact on the Design of Mobile Sensor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 171–188. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Parker, A., Reddy, S., Schmid, T., Chang, K., Saurabh, G., Srivastava, M., Hansen, M., Burke, J., Estrin, D., Allman, M., Paxson, V.: Network System Challenges in Selective Sharing and Verification for Personal, Social and Urban-scale Sensing Applications. In: Proc. of HotNets-V, Irvine (November 2006)Google Scholar
  15. 15.
    Ravi, N., Stern, P., Desai, N., Iftode, L.: Accessing ubiquitous services using smart phones. In: Proc. PERVASIVE 2005, March 8-12 (2005)Google Scholar
  16. 16.
  17. 17.
    Sharony, J.: A Mobile Radio Network Architecture with Dynamically Changing Topology Using Virtual Subnets. In: Proc. ICC 1996, vol. 2, pp. 807–812 (June 1996)Google Scholar
  18. 18.
    Silberschatz, A., Galvin, P.B., Gagne, G.: Operating Systems Concepts, 7th edn. John Wiley & Sons, Inc., Chichester (2004)Google Scholar
  19. 19.
    Srinivasan, K., Levis, P.: RSSI is Under Appreciated. In: Proc. EMNETS 2006, Cambridge, MA (2006)Google Scholar
  20. 20.
    Srinivasan, S., Moghadam, A., Hong, S.G., Schulzrinne, H.G.: 7DS - Node Cooperation and Information Exchange in Mostly Disconnected Networks. In: Proc. ICC 2007, June 1 (2007)Google Scholar
  21. 21.
    Srivastava, M., et al.: Wireless Urban Sensing. In: CENS Tech. Report #65 (April 2006)Google Scholar
  22. 22.
    Tuulos, V., Scheible, J., Nyholm, H.: Combining Web, Mobile Phones and Public Displays in Large-Scale: Manhattan Story Mashup. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 37–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Maxemchuk, N.F.: The Effects of the Number of Neighbors in Multihop Wireless Networks. Int’l Journal of Wireless and Mobile Computing, Special Issue on Group Communications in Ad hoc Networks (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shane B. Eisenman
    • 1
  • Hong Lu
    • 2
  • Andrew T. Campbell
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Dartmouth CollegeHanoverUSA

Personalised recommendations