Advertisement

Mobile Sensor Network Localization in Harsh Environments

  • Harsha Chenji
  • Radu Stoleru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6131)

Abstract

The node localization problem in mobile sensor networks has recently received significant attention. Particle filters, adapted from robotics, have produced good localization accuracies in conventional settings, but suffer significantly when used in challenging indoor and mobile environments characterized by a high degree of radio irregularity. We propose FuzLoc, a fuzzy logic-based approach for mobile node localization in challenging environments and formulate the localization problem as a fuzzy multilateration problem, with a fuzzy grid-prediction scheme for sparse networks. We demonstrate the performance and feasibility of our localization scheme through extensive simulations and a proof-of-concept implementation on hardware, respectively. Simulation results augmented by data gathered from our 42 node indoor testbed demonstrate improvements in the localization accuracy from 20%-40% when the radio irregularity is high.

Keywords

Sensor Network Wireless Sensor Network Fuzzy Number Fuzzy Rule Anchor Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh, M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Computing 10(2) (March-April 2006)Google Scholar
  2. 2.
    George, S., Zhou, W., Chenji, H., Won, M., Lee, Y., Pazarloglou, A., Stoleru, R., Barooah, P.: A wireless ad hoc and sensor network architecture for situation management in disaster response. IEEE Communications Magazine (March 2010)Google Scholar
  3. 3.
    He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao, Q., Vicaire, P., Stankovic, J., Abdelzaher, T., Hui, J., Krogh, B.: VigilNet: an integrated sensor network system for energy-efficient surveillance. ACM Trans. Sens. Netw. 2(1) (2006)Google Scholar
  4. 4.
    Girod, L., Lukac, M., Trifa, V., Estrin, D.: A self-calibrating distributed acoustic sensing platform. In: SenSys (2006)Google Scholar
  5. 5.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: MobiCom (2000)Google Scholar
  6. 6.
    Kusy, B., Sallai, J., Balogh, G., Ledeczi, A., Protopopescu, V., Tolliver, J., DeNap, F., Parang, M.: Radio interferometric tracking of mobile wireless nodes. In: MobiSys (2007)Google Scholar
  7. 7.
    Whitehouse, K., Karlof, C., Culler, D.E.: A practical evaluation of radio signal strength for ranging-based localization. Mobile Computing and Communications Review 11(1) (2007)Google Scholar
  8. 8.
    Hu, L., Evans, D.: Localization for mobile sensor networks. In: MobiCom (2004)Google Scholar
  9. 9.
    Rudafshani, M., Datta, S.: Localization in wireless sensor networks. In: IPSN (2007)Google Scholar
  10. 10.
    Baggio, A., Langendoen, K.: Monte carlo localization for mobile wireless sensor networks. Ad Hoc Netw. 6(5) (2008)Google Scholar
  11. 11.
    Martins, M., Chen, H., Sezaki, K.: OTMCL: Orientation tracking-based monte carlo localization for mobile sensor networks. In: INSS (June 2009)Google Scholar
  12. 12.
    Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine (2000)Google Scholar
  13. 13.
    Zhong, Z., He, T.: Achieving range-free localization beyond connectivity. In: SenSys (2009)Google Scholar
  14. 14.
    Shen, X., Mark, J.W., Ye, J.: Mobile location estimation in CDMA cellular networks by using fuzzy logic. Wirel. Pers. Commun. 22(1) (2002)Google Scholar
  15. 15.
    LeBlanc, K., Saffiotti, A.: Multirobot object localization: A fuzzy fusion approach. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 39(5), 1259–1276 (2009)CrossRefGoogle Scholar
  16. 16.
    Saffiotti, A.: The uses of fuzzy logic in autonomous robot navigation. Soft Computing-A Fusion of Foundations, Methodologies and Applications 1(4), 180–197 (1997)CrossRefGoogle Scholar
  17. 17.
    Kelley, C.T.: Fundamentals of Algorithms - Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)Google Scholar
  18. 18.
    Shokri, J.: On systems of fuzzy nonlinear equations. Appl. Math. Sci, Ruse (2008)Google Scholar
  19. 19.
    Shen, X., Mark, J.W., Ye, J.: User mobility profile prediction: an adaptive fuzzy inference approach. Wirel. Netw. 6(5) (2000)Google Scholar
  20. 20.
    Hayes, M.: Statistical digital signal processing and modeling. Wiley India Pvt. Ltd, Chichester (2008)Google Scholar
  21. 21.
    He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free localization schemes for large scale sensor networks. In: MobiCom (2003)Google Scholar
  22. 22.
    Engelson, S., McDermott, D.: Error correction in mobile robotmap learning. In: ICRA (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Harsha Chenji
    • 1
  • Radu Stoleru
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations