Skip to main content

Decentralized Subspace Tracking via Gossiping

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 6131))

Abstract

We consider a fully decentralized model for adaptively tracking the signal’s principal subspace, which arises in multi-sensor array detection and estimation problems. Our objective is to equip the network of dispersed sensors with a primitive for online spectrum sensing, which does not require a central fusion node. In this model, each node updates its local subspace estimate with its received data and a weighted average of the neighbors’ data. The quality of the estimate is measured by the total subspace mismatch of the individual subspace component estimates, which converge asymptotically in the Lyapunov sense.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scaglione, A., Pagliari, R., Krim, H.: The decentralized estimation of the sample covariance. Asilomar, Pacific Grove (2008)

    Google Scholar 

  2. Stewart, G.: Matrix algorithms. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  3. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. System and Control Letters (2004)

    Google Scholar 

  4. Olfati-Saber, R., Fax, A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. of the IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  5. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology (15), 267–273 (1982)

    Google Scholar 

  6. Karhunen, J.: Adaptive algorithm for estimating eigenvectors of correlation type matrices. In: Proc. ICASSP 1984, vol. 9, pp. 592–595 (March 1984)

    Google Scholar 

  7. Sayed, A.H., Lopes, C.G.: Adaptive processing over distributed networks. IEICE Trans. Fund. Electron. Comm. Comput. Sci. E90-A(8), 1504–1510 (2007)

    Google Scholar 

  8. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: Proc. 4th IPSN, April 2005, pp. 63–70 (2005)

    Google Scholar 

  9. Manton, J., Mareels, I., Attallah, S.: An analysis of the fast subspace tracking algorithm Noja. In: Proc. ICASSP 2002, vol. 2, pp. 1101–1104 (2002)

    Google Scholar 

  10. Attallah, S., Abed-Meraim, K.: Fast algorithm for subspace tracking. IEEE Signal Processing Letters 8(7), 203–206 (2001)

    Article  Google Scholar 

  11. Yang, B.: Projection approximation subspace tracking. IEEE Trans. on Sig. Proc. 43(1), 95–107 (1995)

    Article  MATH  Google Scholar 

  12. Owsley, N.L.: Adaptive data orthogonalization. In: Proc. ICASSP, pp. 109–112 (1978)

    Google Scholar 

  13. Sharman, K.C.: Adaptive algorithms for estimating the complete covariance eigenstrcuture. In: Proc. IEEE ICASSP, pp. 1401–1404 (April 1986)

    Google Scholar 

  14. Bunch, J.R., Nielsen, C.P., Sorenson, D.: Rank-one modification of the symmetric eigenproblem. Numerische Mathematik 31, 31–48 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sardellitti, S., Giona, M., Barbarossa, S.: Fast distributed consensus algorithms based on advection-diffusion processes. In: Sensor Array and Multichannel Signal Processing Workshop (SAM) 2008, July 21-23, pp. 266–270 (2008)

    Google Scholar 

  16. Barbarossa, S., Scutari, G.: Decentralized maximum likelihood estimation for sensor networks composed of nonlinearly coupled dynamical systems. IEEE Trans. on Sig. Proc. 55(7), Part 1, 3456–3470 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kar, S., Moura, J.M.F., Ramanan, K.: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication. IEEE Trans. on Info. Theory (August 2008) (submitted to), arxiv.org/abs/0809.0009

  18. Rabbat, M., Nowak, R.D.: Distributed optimization in sensor networks. In: Proc. 3th IPSN 2004, Berkeley, CA, pp. 20–27 (April 2004)

    Google Scholar 

  19. Schizas, I.D., Giannakis, G.B., Roumeliotis, S.D., Ribeiro, A.: Consensus in Ad Hoc WSNs with noisy links - Part II: Distributed estimation and smoothing of random signals. IEEE Trans. on Sig. Proc. 56(4), 1650–1666 (2008)

    Article  Google Scholar 

  20. Nedic, A., Ozdaglar, A., Parrilo, A.P.: Constrained consensus and optimization in multi-agent networks. LIDS Technical Report 2779, MIT, Lab. for Information and Decision Systems, IEEE Transactions on Automatic Control (2009) (to appear)

    Google Scholar 

  21. Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. In: Proc. 44th IEEE Conf. Eur. Contr. Conf., Seville, Spain, pp. 8179–8184 (December 2005)

    Google Scholar 

  22. Veeravalli, V.V., Basar, T., Poor, H.V.: Minimax robust decentralized detection. IEEE Trans. Inform. Theory 40(1), 35–40 (1994)

    Article  MATH  Google Scholar 

  23. Cattivelli. F., Sayed, A.H.: Diffusion LMS strategies for distributed estimation. IEEE Transactions on Signal Processing (2010) (to appear)

    Google Scholar 

  24. Penrose, M.: Random geometric graph. Oxford Studies in Probability (2003)

    Google Scholar 

  25. Chen, H.S., Gao, W., Daut, D.: Spectrum sensing for wireless microphone signals. In: 5th IEEE SECON Workshops 2008, p. 15 (June 2008)

    Google Scholar 

  26. Unnikrishnan, J., Veeravalli, V.V.: Cooperative sensing for primary detection in cognitive radio. IEEE Journal on Selected Topics in Signal Processing, Special Issue on Dynamic Spectrum Access 2(1), 18–27 (2008)

    Google Scholar 

  27. Kailath, T.: Linear systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  28. Kay, S.M., Gabriel, J.R.: An invariance property of the generalized likelihood ratio test. IEEE Signal Proc. Letters 10, 352–355 (2003)

    Article  Google Scholar 

  29. Yan, W.Y., Helmke, U., Moore, J.B.: Global analysis of Oja’s flow for neural networks. IEEE Trans. Neural Networks, 674–683 (September 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Li, X., Scaglione, A., Manton, J.H. (2010). Decentralized Subspace Tracking via Gossiping. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds) Distributed Computing in Sensor Systems. DCOSS 2010. Lecture Notes in Computer Science, vol 6131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13651-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13651-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13650-4

  • Online ISBN: 978-3-642-13651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics