Advertisement

100 MHz Amplitude and Polarization Modulated Optical Source for Free-Space Quantum Communications at 850 nm

  • M. Jofre
  • A. Gardelein
  • G. Anzolin
  • G. Molina-Terriza
  • J. P. Torres
  • M. W. Mitchell
  • V. Pruneri
Conference paper
  • 635 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 43)

Abstract

We report on an 100 MHz repetition rate integrated photonic transmitter at 850 nm with arbitrary amplitude and polarization modulation. The source is suitable for free-space quantum communication links, in particular for quantum key distribution applications. The whole transmitter, with the optical and electronic components integrated, has reduced size and power consumption. In addition, the optoelectronic components forming the transmitter can be space-qualified, making it suitable for satellite and future space missions.

Keywords

Free-space optical communications quantum communications quantum cryptography faint pulse source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbonneau, T.H., Wisely, D.R.: Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace. In: Wireless Technologies and Systems: Millimeter-Wave and Optical, Proc. SPIE, vol. 3232, pp. 119–128 (1998)Google Scholar
  2. 2.
    Scarani, V., Iblisdir, S., Gisin, N., Acín, A.: Quantum cloning. Rev. Mod. Phys. 77(4), 1225–1256 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  4. 4.
    Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)CrossRefGoogle Scholar
  5. 5.
    Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate. Opt. Express 16(23), 18790–18979 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, T.-Y., Wang, J., Liu, Y., Cai, W.-Q., Wan, X., Chen, L.-K., Wang, J.-H., Liu, S.-B., Liang, H., Yang, L., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: 200km Decoy-state quantum key distribution with photon polarization. arXiv:0908.4063v1 (2009)Google Scholar
  7. 7.
    Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, A., Zeilinger, J.G., Weinfurter, H.: Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)CrossRefGoogle Scholar
  8. 8.
    Weier, H., Schmitt-Manderbach, T., Regner, N., Kurtsiefer, C., Weinfurte, H.: Free space quantum key distribution: Towards a real life application. Fortschr. Phys. 54(8-10), 840–845 (2006)CrossRefGoogle Scholar
  9. 9.
    Kurtsiefer, C., Zarda, P., Halder, M., Gorman, P.M., Tapster, P.R., Rarity, J.G., Weinfurter, H.: Long Distance Free Space Quantum Cryptography. In: Proc. SPIE, vol. 4917, p. 25 (2002)Google Scholar
  10. 10.
    Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors. Nature Photonics 1, 343–348 (2007)CrossRefGoogle Scholar
  11. 11.
    Hwang, W.-Y.: Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)CrossRefGoogle Scholar
  12. 12.
    Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New Journal of Physics 4 (2002)Google Scholar
  13. 13.
    Bonato, C., Tomaello, A., Deppo, V.D., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New Journal of Physics 11, 045017 (2009)CrossRefGoogle Scholar
  14. 14.
    Ursin, R., Jennewein, T., Kofler, J., Perdigues, J.M., Cacciapuoti, L., de Matos, C.J., Aspelmeyer, M., Valencia, A., Scheidl, T., Fedrizzi, A., Acin, A., Barbieri, C., Bianco, G., Brukner, C., Capmany, J., Cova, S., Giggenbach, D., Leeb, W., Hadfield, R.H., Laflamme, R., Lutkenhaus, N., Milburn, G., Peev, M., Ralph, T., Rarity, J., Renner, R., Samain, E., Solomos, N., Tittel, W., Torres, J.P., Toyoshima, M., Ortigosa-Blanch, A., Pruneri, V., Villoresi, P., Walmsley, I., Weihs, G., Weinfurter, H., Zukowski, M., Zeilinger, A.: Space-quest: Experiments with quantum entanglement in space. Europhysics News 40(3), 26–29 (2009)CrossRefGoogle Scholar
  15. 15.
    Bergou, J.A., Herzog, U., Hillery, M.: Discrimination of quantum states. Lecture Notes in Physics, vol. 649. Springer, Berlin (2004)zbMATHGoogle Scholar
  16. 16.
    Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1(2), 238–278 (2009)CrossRefGoogle Scholar
  17. 17.
    Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Information and Computation 8(5), 431–458 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • M. Jofre
    • 1
  • A. Gardelein
    • 1
  • G. Anzolin
    • 1
  • G. Molina-Terriza
    • 1
    • 2
  • J. P. Torres
    • 1
    • 3
  • M. W. Mitchell
    • 1
  • V. Pruneri
    • 1
    • 2
  1. 1.ICFO-Institut de Ciencies FotoniquesMediterranean Technology ParkCastelldefels (Barcelona)Spain
  2. 2.ICREA-Institucio Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  3. 3.Dept. Teoria del Senyal i ComunicacionsUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations