Advertisement

On the Polarization Analysis of Optical Beams for Use in Quantum Communications between Earth and Space

  • Alberto Dall’Arche
  • Andrea Tomaello
  • Cristian Bonato
  • Paolo Villoresi
Conference paper
  • 646 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 43)

Abstract

In this work we will address the transformation of the polarization state of single photons during the transmission along a Space channel and the measures to correct them in order to accomplish Quantum Communication (QC) between Space and Earth.

An open issue in space scale QC is the preservation of polarization states by the telescope and all the involved moving optical components, as well as ensuring the alignment of the polarization basis between the orbiting sender and receiver on Earth. In the following, we will treat in detail this crucial aspect, by modelling the measurement of the polarization properties of the quantum channel, expressed by its Mueller matrix, in the experimental conditions of Ref. [12] with the addition of the control of the outbound state of the photons and the measure of the polarization state of the inbound beam.

Keywords

Satellite quantum communication polarization analysis quantum key distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Villoresi, P., et al.: Experimental verification of the feasibility of a quantum channel between space and earth. New J. Phys. 10, 033038 (2008)CrossRefGoogle Scholar
  2. 2.
    Buttler, W.T., et al.: Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283 (1998)CrossRefGoogle Scholar
  3. 3.
    Kurtsiefer, C., Zarda, P., Halder, M., Weinfurter, H., Gorman, P.M., Tapster, P.R., Rarity, J.: GA step towards global key distribution. Nature 419, 450 (2002)CrossRefGoogle Scholar
  4. 4.
    Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W.R., Zeilinger, A.: Long distance quantum communication with entangled photons using satellites. IEEE J. Sel. Top. Quantum Electron. 9, 1541 (2003)CrossRefGoogle Scholar
  5. 5.
    Villoresi, P., et al.: Space-to-ground quantum communication using an optical ground station: a feasibility study. In: Quantum Communications and Quantum Imaging II Proc. SPIE, vol. 5551, p. 113 (2004) quantph/0408067v1Google Scholar
  6. 6.
    Peng, C.Z., et al.: Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite- based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005)Google Scholar
  7. 7.
    Bonato, C., et al.: Influence of satellite motion on polarization qubits in a space-Earth quantum communication link. Opt. Express 14, 10050 (2006)CrossRefGoogle Scholar
  8. 8.
    Bonato, C., Pernechele, C., Villoresi, P.: Influence of all-reflective optical systems in the transmission of polarization-encoded qubits. J. Opt. A: Pure Appl. Opt. 9899 (2007)Google Scholar
  9. 9.
    Bonato, C., Tomaello, A., Deppo, V.D., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New J. Phys. 11 (2009), 45017 Google Scholar
  10. 10.
    Ursin, R., et al.: Space-quest: experiments with quantum entanglement in space. In: Int. Aeronautical Congress Proc. A2.1.3 (2008), arXiv:0806.0945Google Scholar
  11. 11.
    Degnan, J.J.: Millimiter accuracy satellite laser ranging: A review. Contributions of Space Geodesy to Geodynamics Technology. In: Smith, D.E., Turcotte, D.L. (eds.). AGU Geodynamics Series, vol. 25, p. 133 (1993)Google Scholar
  12. 12.
    Aiello, A., Puentes, G., Voigt, D., Woerdman, J.P.: Maximum-likelihood estimation of Mueller matrices. Optics letters 31, 6 (2006)Google Scholar
  13. 13.
    Bouwmeester, D., Ekert, A.K., Zeilinger, A.: Physics of Quantum Information. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Goldstein, D.: Polarized Light, 2nd edn. Marcel Dekker, New York (2003)Google Scholar
  15. 15.
    Ahmad, J.E., Takakura, Y.: Estimation of physically realizable Mueller matrices from experiments using global constrained optimization. Optics express (August 28, 2008)Google Scholar
  16. 16.
    Toyoshima, M., Takenaka, H., Shoji, Y., Takayama, Y., Koyama, Y., Kunimori, H.: Polarization measurements through space-to- ground atmospheric propagation paths by using a highly polarized laser source in space. Optics express (November 23, 2009)Google Scholar
  17. 17.
    Howell, B.J.: Measurement of the polarization effects of an instrument using partially polarized light. App. Opt. 18(6) (1979)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Alberto Dall’Arche
    • 1
    • 2
  • Andrea Tomaello
    • 1
    • 2
  • Cristian Bonato
    • 1
    • 2
    • 3
  • Paolo Villoresi
    • 1
    • 2
  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly
  2. 2.CNR-INFM LUXOR Laboratory for Ultraviolet and X-ray Optical ResearchPadovaItaly
  3. 3.Huygens LaboratoryLeiden UniversityLeidenThe Netherlands

Personalised recommendations