Overview of PHY-Layer Design Challenges and Viable Solutions in W-Band Broadband Satellite Communications

  • Claudio Sacchi
  • Tommaso Rossi
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 43)


The exploitation of Extremely High Frequency (EHF) bands for broadband satellite communications really represents a challenging frontier for aerospace R&D. In few time, ALPHASAT mission (through the Technology Demonstration Payload 5) should test Q/V band (40-50GHz) digital satellite transmission. Moreover, a lot of effort is spent to study the feasibility of broadband links in W-band (70-110GHz). This paper is devoted at showing the most relevant challenges to be faced in the effective PHY-layer design of W-band satellite connections. Some practical solutions will be analyzed together with a look to future solutions in phase of testing. From the proposed analysis, it is clear that effects of nonlinear distortions and phase noise should be adequately counteracted by considering spectrally-efficient solutions. In such a perspective, it seems that efficient coded modulations employed together with appropriate pulse shaping can be regarded as effective PHY-layer solutions for future high-frequency and high-data rate connections.


Satellite communications EHF communications gigabit connectivity Modulation Pulse shaping Channel coding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farserotu, J., Prasad, R.: A Survey of Future Broadband Multimedia Satellite Systems, Issues and Trends. IEEE Comm. Mag., 128–133 (2000)Google Scholar
  2. 2.
    Ibnkahla, M., Rahaman, Q.M., Sulyman, A.Y., Al-Asady, H.A., Yuan, J., Safwat, A.: High-Speed Satellite Mobile Communications: Technologies and Challenges. Proceedings of the IEEE 92(2), 312–339 (2004)CrossRefGoogle Scholar
  3. 3.
    De Fina, S., Ruggieri, M., Bosisio, A.V.: Exploitation of the W-band for High-Capacity Satellite Communications. IEEE Trans. on AES 39(1), 82–93 (2003)Google Scholar
  4. 4.
    Pinhasi, Y., Yahalom, A., Harpaz, O., Vilner, G.: Study of Ultra-wideband Transmission in Extremely High Frequency (EHF) Band. IEEE Trans. on Antennas and Propagat. 52(11), 2833–2842 (2004)CrossRefGoogle Scholar
  5. 5.
    Gallinaro, G., Speziale, V., Vernucci, A.: The Alphasat Q/V-band Experimental Mission (TDP#5): Objectives and Opportunities (2006),
  6. 6.
    Ruggieri, M., De Fina, S., Pratesi, M., Salome’, A., Saggese, E., Bonifazi, C.: The W-band Data Collection Experiment of the DAVID Mission. IEEE Transactions on AES 38(4), 1377–1387 (2002)Google Scholar
  7. 7.
    Jebril, A., Lucente, M., Ruggieri, M., Rossi, T.: WAVE – A new mission in W band. In: Proc. of 2005 IEEE Aerospace Conf., Big Sky (MT), March 5-12 (2005)Google Scholar
  8. 8.
    Lucente, M., Rossi, T., Jebril, A., Ruggieri, M., Iera, A., Molinaro, A., Pulitanò, S., Sacchi, C., Zuliani, L.: Experimental Missions in W-Band: a Small LEO Satellite Approach. IEEE Systems Journal 2(1), 90–102 (2008)CrossRefGoogle Scholar
  9. 9.
    Sacchi, C., Gera, G., Regazzoni, C.: W-band Physical Layer Design Issues in the Context of the DAVID-DCE Experiment. Int. Jour. of Satellite Communications and Networking 22(2), 193–215 (2004)CrossRefGoogle Scholar
  10. 10.
    Saleh, A.A.M.: Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun. COM 29(11), 1715–1720 (1981)CrossRefGoogle Scholar
  11. 11.
    Tirrò, S. (ed.): Satellite Communication Systems Design. Plenum Press, New York (1993)Google Scholar
  12. 12.
    Fikart, J.L., Kocay, B.: Cost Effective Operating Power Specification of Ka-Band MMICS for Multimedia Satellite Interactive Terminals. In: Proc. of 1999 IEEE MTT-S Symposium on Technologies for Wireless Applications, pp. 247–252 (1999)Google Scholar
  13. 13.
    Polonio, R., Riva, C.: ITALSAT propagation experiment at 18.7, 39.6 and 49.5 GHz at Spino D’Adda: three years of CPA statistics. IEEE Trans. on Antennas and Propagat. 46(5), 631–635 (1998)CrossRefGoogle Scholar
  14. 14.
    Lemorton, J., Castanet, L., La coste, F., Riva, C., Matriccciani, E., Fiebig, U.C., Van De Kamp, M., Martellucci, A.: Development and validation of time-series synthesizers of rain attenuation for Ka-band and Q/V-band satellite communication systems. Int. Jour. of Satellite Comm. and Networking 25(5), 575–601 (2007)CrossRefGoogle Scholar
  15. 15.
    Castanet, L., Deloues, T., Lemorton, J.: Methodology to simulate long-term propagation time-series from the identification of attenuation periods filled with synthesized events. In: Int. Workshop on Satellite Communications from Fade Mitigation to Service Provision, Noordwijk, NL (2003)Google Scholar
  16. 16.
    ITU-R Recommendation P.1623: Prediction method of fade dynamics on Earth-space path, Geneva (CH) (2005) Google Scholar
  17. 17.
    Pahvalan, K., Levesque, A.: Wireless Information Networks. Wiley, New York (1995)Google Scholar
  18. 18.
    Proakis, J.G.: Digital Communications (new ed.). McGraw-Hill, New York (2000)Google Scholar
  19. 19.
    Kantak, A.V.: A Method for obtaining Signal Components and Their Power Content of Residual Carrier Signal. IEEE Trans on EMC 33(3), 269–270 (1991)Google Scholar
  20. 20.
    Recommendation on Telemetry Channel Coding, issued by: Consultative Committee for Space Data System (CCSDS), Oxfordshire, UK (2001)Google Scholar
  21. 21.
    Sacchi, C., Grigorova, A.: Use of Trellis-Coded Modulation for Gigabit/sec Transmissions over W-Band Satellite Links. In: Proc. of 2006 IEEE Aerospace Conf., Big Sky, MT (2006), vailable on CD-ROM Google Scholar
  22. 22.
    Ungerboeck, G.: Trellis-coded Modulation with Redundant Signal Sets – Part II: State of the Art. IEEE Comm. Mag. 25, 12–21 (1987)CrossRefGoogle Scholar
  23. 23.
    Sacchi, C., Musso, M., Gera, G., Regazzoni, C., De Natale, F.G.B., Jebril, A., Ruggieri, M.: An Efficient Carrier Recovery Scheme for High-Bit-Rate W-Band Satellite Communication Systems. In: Proc. of 2005 IEEE Aerospace Conference, Big Sky, Montana, USA (2005) (available on CD-ROM)Google Scholar
  24. 24.
    Rustako, A.J., Greenstein, L.J., Roman, R.R., Saleh, A.M.: Using Times-Four Carrier Recovery in M-QAM Digital Radio Receivers. IEEE Journal on Selec. Areas in Communications SAC 5(3), 524–533 (1987)CrossRefGoogle Scholar
  25. 25.
    Jeruchim, M.C., et al.: Simulation of Communication Systems. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  26. 26.
    Couch II, L.W.: Digital and Analog Communication Systems, 7th edn. Pearson – Prentice Hall, Upper Saddle River, NJ (2007)Google Scholar
  27. 27.
    Martin, W.L., Nguyen, T.M.: CCSDS-SFCG Efficient Modulation Methods Study: A comparison of Modulation Schemes, Phase 2: Spectrum Shaping, CCSDS Tech. Rep. (1994)Google Scholar
  28. 28.
    Rice, M., Oliphant, T., Haddadin, O., McIntire, W.: Estimation Technique for GMSK using Linear Detectors in Satellite Communications. IEEE Trans. on AES 43(4), 1484–1495 (2007)Google Scholar
  29. 29.
    Sacchi, C., Rossi, T., Menapace, M., Granelli, F.: Utilization of UWB Transmission Techniques for Broadband Satellite Connections operating in W-band. In: Proc. of 1st IEEE EHF-AEROCOMM Workshop Conf. (in conjunction with IEEE Globecom 2008), New Orleans, LA (2008)Google Scholar
  30. 30.
    Slepian, D., Pollak, H.O.: Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty. I. Bell System Tech. J. 40, 43–64 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Usuda, K., Zhang, H., Nakagawa, M.: M-ary pulse shape modulation for PSWF-based UWB systems in multipath fading environment. In: Proc. IEEE Globecom 2004 Conf., Dallas (TX), pp. 3498–3504 (2004)Google Scholar
  32. 32.
    Howard, S.L., Schlegel, C.: Differential Turbo-Coded Modulation With APP Channel Estimation. IEEE Trans on Comm. 54(8), 1397–1406 (2006)CrossRefGoogle Scholar
  33. 33.
    Cabric, D., Chen, M.S.W., Sobel, D.A., Wang, S., Jang, J., Brodersen, R.: Novel Radio Architectures for UWB, 60GHz and Cognitive Wireless Systems. EURASIP Jour. on Wireless Comm. and Networking 2006 Article ID 17957, 1–18 (2006)CrossRefGoogle Scholar
  34. 34.
    Eisele, H.: GaAs W-band impatt diodes for very low-noise oscillators. Electronics Letters 26(2), 109–110 (1990)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Carlstrom, J.E., Plambeck, R.L., Thornton, D.D.: A continuously tunable 65-115-GHz Gunn oscillator. IEEE Trans. on Microwave Theory and Techniques MT-33, 610–619 (1985)CrossRefGoogle Scholar
  36. 36.
    Howard, S.L., Schlegel, C.: Differential Turbo-Coded Modulation with APP Channel Estimation. IEEE Trans. on Comm. 54(8), 1397–1405 (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Claudio Sacchi
    • 1
    • 2
  • Tommaso Rossi
    • 3
  1. 1.Department of Information EngineeringUniversity of TrentoPovoItaly
  2. 2.Department of Computer Science (DISI)University of TrentoPovoItaly
  3. 3.Department of ElectronicsUniversity of Rome,“Tor Vergata”RomeItaly

Personalised recommendations