Skip to main content

Plant Growth Promoting Rhizobacteria: Constraints in Bioformulation, Commercialization, and Future Strategies

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 18))

Abstract

Bioformulations for plant growth promotion continue to inspire research and development in many fields. Increase in soil fertility, plant growth promotion, and suppression of phytopathogens are the targets of the bioformulation industry that leads to the development of ecofriendly environment. The synthetic chemicals used in the agriculture to increase yields, kill pathogens, pests, and weeds, have a big harmful impact on the ecosystem. But still the chemicals rule the agroindustry. The aim of the review is to assess the constraints associated with the effective development of bioinoculant industry particularly in developing countries. Another objective of the review is to evaluate what should be explored in the future to uplift the stature of the bioinoculants. Bioformulations offer an environmentally sustainable approach to increase crop production and health, contributing substantially in making the twenty-first century the age of biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed N, Jamil N, Khan OY, Yasmen S, Haq Z-Ul, AhmedmVU, Rahman AT (2000) Commercially important products from marine bacteria. Marine Biotechnology. In: Proceedings of National ONR Symposium on Arabian Sea a resource of biological diversity, pp 104–114

    Google Scholar 

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Article  Google Scholar 

  • Amiet-charpentier C, Gadille P, Digat B, Benoit JP (1998) Microencapsulation of rhizobacteria by spray-drying: formulation and survival studies. J Microencapsul 15:639–659

    Article  PubMed  CAS  Google Scholar 

  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16s rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    Article  PubMed  CAS  Google Scholar 

  • Arora NK, Kumar V, Maheshwari DK (2001) Constraints, development and future of the inoculants with special reference to rhizobial inoculants. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Singh and Singh, Dehradun, India, pp 241–245

    Google Scholar 

  • Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007a) Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctinia solani. Can J Microbiol 53:207–212

    Article  PubMed  CAS  Google Scholar 

  • Arora NK, Khare E, Verma A (2007b) Biofertilizer technology for economical and environmentally viable agriculture production. Kurukshetra 55(4):20–24

    Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008a) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Curr Sci 95(1):90–94

    Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008b) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Article  Google Scholar 

  • Arora NK, Khare E, Verma A, Sahu RK (2008c) In vivo control of Macrophomina phaseolina by a chitinase and β-1,3-glucanase-producing pseudomonad NDN1. Symbiosis 46:129–135

    CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria use in agriculture. Biotech Adv 6:729–770

    Article  Google Scholar 

  • Beale E, Li G, Tan MW, Rumbaugh KP (2006) Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135–5137

    Article  PubMed  CAS  Google Scholar 

  • Bell A, Hubbard JC, Liu L, Davis RM, Subbarao KV (1998) Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Dis 82:322–328

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Sing A, Mukhopadyay SN (2008) Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  PubMed  CAS  Google Scholar 

  • Bhowmik B, Singh RP, Jayaraman J, Verma JP (2002) Population dynamics of cotton endophytic Pseudomonas, their antagonism and protective action against the major pathogens of cotton. Indian Phytopathol 55(2):24–132

    Google Scholar 

  • Böeltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, Ramos JL (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1:87–93

    Google Scholar 

  • Bolckmans K (2008) Biocontrol files. Can Bull Ecol Pest Manag 13:1–10

    Google Scholar 

  • Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agroecosystems. Environ Microbiol 5:441–452

    Article  PubMed  Google Scholar 

  • Chitriv AJ (1986) Sensitivity of mungbean rhizobia to seed dressing chemicals. In: Singh R, Nanawati HS, Sawhrey SK (eds) Proceedings of national symposium on current status of biological nitrogen fixation research, Hissar, pp 116

    Google Scholar 

  • Cook RJ (2000) Advances in plant health management in the 20th century. Ann Rev Phytopathol 38:95–116

    Article  CAS  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control off take-all on wheat. Phytopathology 86:88–194

    Article  Google Scholar 

  • Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschuz. Schnreihe dtsch Phytomed Ges 8:17–31

    CAS  Google Scholar 

  • Elliott ET, Anderson RV, Coleman DC, Cole CV (1980) Habitable pore space and microbial trophic interaction. Oikos 35:327–335

    Article  Google Scholar 

  • Evans J, Wallace C, Dobrowolski N (1993) Interaction of soil type and temperature on the survival of Rhizobium leguminosarum bv. viciae. Soil Biol Biochem 25:1153–1160

    Article  Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • Fontanille P, Larroche C (2003) Optimization of isonovalal production from alpha-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CiolIP 107491. Appl Microbiol Biotechnol 60:534–540

    PubMed  CAS  Google Scholar 

  • Fould S, Dieng AL, Davies KG, Normand P, Mateille T (2001) Immunological quantification of the nematode parasitic bacterium Pasteuria penetrans in soil. FEMS Microbiol Ecol 37:187–195

    Article  CAS  Google Scholar 

  • García de Castro A, Lapinski J, Tunnacliffe A (2000) Anhydrobiotic engineering. Nat Biotechnol 18:473

    Article  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  PubMed  CAS  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14:53–63

    Article  PubMed  CAS  Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Hattori R (1976) The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit Rev Microbiol 4:423–461

    Article  PubMed  CAS  Google Scholar 

  • Ho WC, Ko WH (1985) Soil microbiostasis: effects of environmental and edaphic factors. Soil Biol Biochem 17:167–170

    Article  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    Article  PubMed  CAS  Google Scholar 

  • Jiao JY, Wang HX, Zeng Y, Shen YM (2006) Enrichment for microbes living in association with plant tissues. J Appl Microbiol 100:830–837

    Article  PubMed  Google Scholar 

  • Johnsson L, Hokeberg M, Gerhardson B (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed borne disease in field experiments. Eur J Plant Pathol 104:701–711

    Article  Google Scholar 

  • Kabi MC (1997) Impact of biofertilizer on rural development. In: Proceedings of National Conference on impact of biotechnology and modern horticulture in rural development. Jadavpur University, Calcutta

    Google Scholar 

  • Kahng HY, Nam K, Kukor JJ, Yoon BJ, Lee DH, Oh DC, Kam SK, Oh KH (2002) PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl Microbiol Biotechnol 60:475–480

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631

    Article  PubMed  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogea L.) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldán A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38:520–525

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Lutenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  Google Scholar 

  • Manzanera M, Vilchez S, Tunnacliffe A (2004) Plastic encapsulation of stabilized Escherichia coli and Pseudomonas putida. Appl Environ Microbiol 70(5):3143–3145

    Article  PubMed  CAS  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179.1–R179.13

    Article  Google Scholar 

  • McSpadden Gardner BB (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Progress. doi:10.1094/PHP-2002-0510-01-R

    Google Scholar 

  • Millner PD, Wright SF (2002) Tools for support of ecological research on arbuscular mycorrhizal fungi. Symbiosis 33:101–123

    Google Scholar 

  • Moënne-Loccoz Y, Powell J, Higgins P, Britton J, O’ Gara F (1998) Effect of the biocontrol agent Pseudomonas fluorescens F113 released as sugarbeet inoculant on the nutrient contents of soil and foliage of a red clover rotation crop. Biol Fertil Soils 27:380–385

    Article  Google Scholar 

  • Moënne-Loccoz Y, Naughton M, Higgins P, Powell J, O’ Gara F (1999) Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. J Appl Microbiol 86:108–116

    Article  Google Scholar 

  • Neimann S, Keel C, Puhler A, Seibitschka W (1997) Biocontrol strain Pseudomonas fluorescens CHA0 and its genetically modified derivative with enhanced biocontrol capability exert comparable effects on the structure of a Sinorhizobium meliloti population in gnotobiotic systems. Biol Fertil Soils 25:240–244

    Article  Google Scholar 

  • Palmfeldt J, Radstrom P, Hahn-Hagerdal B (2003) Optimization of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis. Cryobiology 47:21–29

    Article  PubMed  Google Scholar 

  • Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40:34–39

    Article  CAS  Google Scholar 

  • Príncipe A, Alvarez F, Castro MG, Zachi L, Fisher SE, Mori GB, Jofré E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    Article  PubMed  Google Scholar 

  • Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP, Lima DS, Goulart T, Bernardi CM, Miyauchi M, Nogueira MA, Andrade GA (2007) Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (Glomus clarum) in rice (Oryza sativa). Appl Soil Ecol 35:25–34

    Article  Google Scholar 

  • Ravnskov S, Jensen B, Knudsen IMB, Bødker L, Jensen DF, KarliÅ„ski L, Larsen J (2006) Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intraradices results in mutual inhibition, plant growth promotion and alteration of soil microbial communities. Soil Biol Biochem 38:3453–3462

    Article  CAS  Google Scholar 

  • Ross IL, Alami Y, Harvey Achouak PRW, Ryder MH (2000) Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl Environ Microbiol 66:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Rzewnicki P (2000) Ohio organic producers: final survey results. Online. Ohio State University Extention, College of Food Agricultural and Environmental Sciences, Bulletin, Special Circular, pp 174

    Google Scholar 

  • Saha AK, Deshpande MV, Kapadnis BP (2001) Studies on survival of Rhizobium in the carriers at different temperatures using green fluorescent protein marker. Curr Sci 80(5):669–671

    CAS  Google Scholar 

  • Sarkar T, Balasubramanayam A (1978) Interaction of two organophosphorus pesticides with Rhizobium species and their degradation in vitro. Madras Agric 65:325–328

    Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactoneproducing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Govindasamy V, Annapurna K (2007) Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr Microbiol 55:25–29

    Article  PubMed  CAS  Google Scholar 

  • Shah-Smith DA, Burns RG (1997) Shelf-life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coating. Biocontrol Sci Technol 7:65–74

    Article  Google Scholar 

  • Shigematsu T, Tumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53:1479–1483

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhances biological control of multiple tomato pathogens. Biol Fertil Soils 36:260–268

    Article  Google Scholar 

  • Singh PPS, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  PubMed  CAS  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Subba Rao NS (1993) Biofertilizers in agriculture and forestry. Oxford and IBH Publishing, New Delhi, p 242

    Google Scholar 

  • Subba Rao NS (1999) Soil Microbiology In: Soil microorganisms and plant growth, 4th ed. Oxford & IBH Publishing, New Delhi, pp 78–98

    Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population densitydependent behaviours in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Timms-Wilson TM, Kilshaw K, Bailey MJ (2004) Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops. Plant Soil 266:57–67

    Article  CAS  Google Scholar 

  • Trevors JT, van Elsas JD, Lee H, van Overbeck LS (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases 1:61–69

    Google Scholar 

  • Tripathi A, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. Nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680

    Article  PubMed  CAS  Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephen D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. Radicus-lycopersici in stone substrate. J Appl Microbiol 102:461–471

    Article  PubMed  CAS  Google Scholar 

  • Validov SZ, Kamilova F, Lugtenberg BJJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48:6–11

    Article  Google Scholar 

  • van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil – a review. Biol Fertil Soils 10:127–133

    Google Scholar 

  • Vargas R, Hattori T (1986) Protozoan predation of bacterial cells in soil aggregates. FEMS Microbiol Ecol 38:233–242

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wright DA, Killham K, Glover LA, Prosser JI (1995) Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol 61:3537–3543

    PubMed  CAS  Google Scholar 

  • Yin J, Straight PD, Hrvatin S, Dorrestein PC, Bumpus SB, Jao C et al (2007) Genome-wide high-throughput mining of natural-product biosynthetic gene clusters by phage display. Chem Biol 14:303–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Thanks are due to Council of Scientific and Industrial Research, New Delhi, Council of Science & Technology, Lucknow and UCOST, Dehradun, India. Authors are grateful to Vice Chancellor, CSJM University, Kanpur, India for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen K. Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arora, N.K., Khare, E., Maheshwari, D.K. (2010). Plant Growth Promoting Rhizobacteria: Constraints in Bioformulation, Commercialization, and Future Strategies. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_5

Download citation

Publish with us

Policies and ethics