Skip to main content

Plant Growth Promoter Rhizobacteria in Plants Inhabiting Harsh Tropical Environments and Its Role in Agricultural Improvements

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Abstract

The importance of the interactions between plants and bacteria is well known for plant development and success of agriculture. A number of succeeded examples are reported in the literature for the improvement of plant yields and protection against pathogens and pests. However, some specific niches where these interactions are essential are still unexplored, like the environments where the agriculture is not practiced due to the harsh conditions found; mangroves and the Brazilian semiarid caatinga. Digging into the bacterial diversity associates to plant growth promotion in such spots can help on the description of new species and features related to the plant growth-promoting rhizobacteria character under harsh tropical conditions. This chapter gives an overview of examples of such niches, where the bacterial community must be adapted to survive and support the plant development. Possible bacterial characteristics related to this ability will be discussed, as the production of biofilms and exopolysaccharides. Furthermore, the application of these biotechnological products will be evaluated and discussed allowing the reader to have a snapshot on this yet nonexplored biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulini T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain Isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  PubMed  CAS  Google Scholar 

  • Alongi DM, Boto KG, Tirendi F (1989) Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Mar Ecol Prog Ser 56:133–144

    Article  Google Scholar 

  • Andreote FD, Azevedo JL, Araújo WL (2009) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432

    Article  CAS  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  PubMed  CAS  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soils 35:231–237

    Article  CAS  Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8:1015–1020

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant-growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms, 7th edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel J-C (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152–156

    Article  Google Scholar 

  • Camacho M, Santamaría C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062

    PubMed  CAS  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, New York, pp 11–34

    Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chang W-S, Mortel M, Nielsen L, Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    Article  PubMed  CAS  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  PubMed  CAS  Google Scholar 

  • Coronado C, Sánchez-Anddújar B, Palomares AJ (1996) Rhizobium extracellular structures in the symbiosis. World J Microbiol Biotechnol 12:127–136

    Article  CAS  Google Scholar 

  • Crump BC, Hopkinson CS, Sogin ML, Hobbie JE (2004) Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol 70:494–1505

    Article  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Ver 64:847–867

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Dick RPA (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial paramaters. Agric Ecosyst Environ 40:25–30

    Article  CAS  Google Scholar 

  • Dommergues YR, Belser LW, Schmidt EL (1978) Limiting factors for microbial growth and activity in soil. Adv microb Ecol 2:49–104

    Article  Google Scholar 

  • Díaz K, Valiente C, Martínez M, Castillo M, Sanfuentes E (2009) Root promoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 25:867–873

    Article  Google Scholar 

  • Egamberdiyeva D, Höflich GH (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56: 293–30

    Article  Google Scholar 

  • Egamberdiyeva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:187–1193

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Giulietti NA, Harley RM, Queiroz LP, Rapini A (2006) Introduction: Top set the scene. In: Queiroz LP, Rapini A, Giulietti NA (eds) Towards greater knowledge of the Brazilian semi-arid biodiversity. Ministério Ciência e Tecnologia (MCT), BrasÚlia, pp 15–19

    Google Scholar 

  • Giulietti AM et al (2002) Flora. In: Pereira RM, Montenegro MM, Fonseca M (eds) Avaliação e ações prioritárias para a conservação da biodiversidade da Caatinga. Ministério do Meio Ambiente, SBF, Brasília, p 36

    Google Scholar 

  • Giulietti NA, Harley RM, Queiroz LP, Rapini A (2006) Top set the scene. In: Queiroz LP, Rapini A, Giulietti NA (eds) Towards greater knowledge of the Brazilian semi-arid biodiversity. Ministério Ciênica e Tecnologia (MCT), Brasilia, pp 15–19

    Google Scholar 

  • Hallmann J, QuadtHallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean – inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Lemanceau P, Prosser JI (2008) Multitrophic interactions in the rhizosphere Rhizosphere microbiology: at the interface of many disciplines and expertises. FEMS Microbiol Ecol 65:179

    Article  PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründung und Brache. Arb Deutsch Landwirt Ges 98:59–78

    Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Holguin G, Zamorano PG, Bashan LED, Mendoza R, Amador E, Bashan Y (2006) Mangrove health in an arid environment encroached by urban development – a case study. Sci Total Environ 363:260–274

    Article  PubMed  CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007a) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  PubMed  CAS  Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007b) Screening rhizobacterial for biological control of Fusarium root and crow rot of sorghum in Ethiopia. Biol Control 40:97–106

    Article  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B 60:7–11

    Article  CAS  Google Scholar 

  • Kathiresan K, Selvam M (2006) Evaluation of beneficial bacteria from mangrove soil. Bot Mar 49:86–88

    Article  CAS  Google Scholar 

  • Keith LMW, Bender CL (1999) AlgT (S22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181:7176–7184

    PubMed  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  PubMed  CAS  Google Scholar 

  • Kishore GK, Pande S (2007) Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces secerity of Botrytis gray mold disease in chickpea under controlled conditions. Lett Appl Microbiol 44:98–105

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Vol. 2. Station de Pathologie Vegetale et Phytobacteriologie, Anegrs. Anais. França, pp 879–882

    Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, RoldÃn A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Article  Google Scholar 

  • Knoepp JD, Coleman DC, Crossley DA Jr, Clark JS (2000) Biological indices of soil quality: an ecosystem case study of their use. Fores Ecol Manage 138:357–368

    Article  Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and in the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    Article  PubMed  CAS  Google Scholar 

  • Melo IS (2002) Recursos genéticos microbianos. In: Melo IS, Valadare-Inglis MC, Nass LL, Valois ACC (eds) Recursos Genéticos e Melhoramento – Microrganismos. EMBRAPA Meio Ambiente, Jaguariúna/SP, pp 2–48

    Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  PubMed  CAS  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Parkinson D, Coleman DC (1991) Microbial communities, activity and biomass. Agric Ecosyt Environ 34(1):3–33

    Article  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Rao D, Webb JS, Kjelleberg S (2006) Microbial colonization and competition on the marine alga Ulva australis. Appl Environ Microbiol 72:5547–5555

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Rodríguez H, Gonzalez T, Selmán G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    Article  Google Scholar 

  • Roper MC, Greve LC, Labavitch JM, Kirkpatrick BC (2007) Detection and visualization of an exopolysaccharide produced by Xylella fastdiosa in vitro and in planta. Appl Environ Microbiol 73:7252–7258

    Article  PubMed  CAS  Google Scholar 

  • Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Schnider-Keel U, Lejbølle KB, Baehler E, Haas D, Keel C (2001) The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 67:5683–5693

    Article  PubMed  CAS  Google Scholar 

  • Seldin L, Van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456

    Article  CAS  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Siqueira JO, Moreira FM, Grisi BM, Hungria M, Araujo RS (1994) Microrganismos e processos biológicos do solo: perspectivas ambientais. In: Siqueira JO (ed) Empresa Brasileira de pesquisa Agropecuária. Centro nacional de pesquisa de Arroz e feijão, Centro Nacional de Pesquisa de Soja, Brasília DF, p 142

    Google Scholar 

  • Sjõling S, Mohammed SM, Lyimoc TJ, Kyaruzib JJ (2005) Benthic bacterial diversity and nutrient processes in mangroves: impact of deforestation. Estuar Coast Shelf Sci 63:397–406

    Article  Google Scholar 

  • Stacey G, Burris RH, Evans HJ (1992) Biological nitrogen fixation. Chapman and Hall, New York

    Google Scholar 

  • Stotzky G (1972) Activity, ecology, and population dynamics of microorganisms in soil. Crit Rev Microbiol 1:59–137

    Article  Google Scholar 

  • Stout LM, Nüsslein K (2005) Shifts in rhizoplane communities of aquatic plants after cadmium exposure. Appl Environ Microbiol 71:2484–2492

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333

    Article  PubMed  CAS  Google Scholar 

  • Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanism of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    Article  PubMed  CAS  Google Scholar 

  • Trivedi P, Pandey A (2007) Application of immobilized cells of Pseudomonas putida strain MTCC 6842 in alginate to solubilize phosphate in culture medium and soil. J Plant Nutr Soil Sci 170:629–631

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Von Der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol 21:1591–1597

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT Jr (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max(L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–460

    Article  Google Scholar 

  • Zhou HW, Guo CL, Wong YS, Tam NFY (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett 262:148–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Brazilian Agricultural Research Corporation (Embrapa) and São Paulo Research Foundation (FAPESP) for the financial supporting of our ongoing research on the role of microbes in tropical environments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Dini Andreote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santos, S.N., Kavamura, V.N., da Silva, J.L., de Melo, I.S., Andreote, F.D. (2010). Plant Growth Promoter Rhizobacteria in Plants Inhabiting Harsh Tropical Environments and Its Role in Agricultural Improvements. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_11

Download citation

Publish with us

Policies and ethics