Advertisement

Comparing Approaches to Implement Feature Model Composition

  • Mathieu Acher
  • Philippe Collet
  • Philippe Lahire
  • Robert France
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6138)

Abstract

The use of Feature Models (FMs) to define the valid combinations of features in Software Product Lines (SPL) is becoming commonplace. To enhance the scalability of FMs, support for composing FMs describing different SPL aspects is needed. Some composition operators, with interesting property preservation capabilities, have already been defined but a comprehensive and efficient implementation is still to be proposed. In this paper, we systematically compare strengths and weaknesses of different implementation approaches. The study provides some evidence that using generic model composition frameworks are not helping much in the realization, whereas a specific solution is finally necessary and clearly stands out by its qualities.

Keywords

Composition Operator Intersection Mode Graph Transformation Semantic Property Software Product Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. 2.
    Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis (FODA). Technical Report CMU/SEI-90-TR-21, SEI (November 1990)Google Scholar
  3. 3.
    Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature diagrams. Comput. Netw. 51(2), 456–479 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to managing highly complex product families. Requir. Eng. 12(2), 57–75 (2007)CrossRefGoogle Scholar
  6. 6.
    Tun, T.T., Heymans, P.: Concerns and their separation in feature diagram languages - an informal survey. In: Proceedings of the Workshop on Scalable Modelling Techniques for Software Product Lines (SCALE@SPLC 2009), pp. 107–110 (2009)Google Scholar
  7. 7.
    Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specialization and Multilevel Configuration of Feature Models. Software Process: Improvement and Practice 10(2), 143–169 (2005)CrossRefGoogle Scholar
  8. 8.
    Hartmann, H., Trew, T.: Using feature diagrams with context variability to model multiple product lines for software supply chains. In: SPLC 2008, pp. 12–21. IEEE, Los Alamitos (2008)Google Scholar
  9. 9.
    Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring product lines. In: GPCE 2006, pp. 201–210. ACM, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of feature models using graph transformations. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in Software Engineering II. LNCS, vol. 5235, pp. 489–505. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Acher, M., Collet, P., Lahire, P., France, R.: Composing Feature Models. In: Gašević, D. (ed.) SLE 2009. LNCS, vol. 5969, pp. 62–81. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Acher, M., Collet, P., Lahire, P., Montagnat, J.: Imaging Services on the Grid as a Product Line: Requirements and Architecture. In: Service-Oriented Architectures and Software Product Lines (SOAPL 2008), at SPLC 2008, IEEE, Los Alamitos (2008)Google Scholar
  13. 13.
    Acher, M., Collet, P., Lahire, P., France, R.: Managing Variability in Workflow with Feature Model Composition Operators. In: 9th International Conference on Software Composition (SC 2010), June 2010. LNCS. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Hartmann, H., Trew, T., Matsinger, A.: Supplier independent feature modelling. In: SPLC 2009, pp. 191–200. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  15. 15.
    Tun, T.T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.: Relating requirements and feature configurations: A systematic approach. In: SPLC 2009, pp. 201–210. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  16. 16.
    Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In: ICSE 2009, pp. 254–264. IEEE, Los Alamitos (2009)Google Scholar
  17. 17.
    Kim, C.H.P., Czarnecki, K.: Synchronizing cardinality-based feature models and their specializations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 331–348. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again. In: SPLC 2007, pp. 23–34 (2007)Google Scholar
  19. 19.
    Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., Classen, A.: Evaluating formal properties of feature diagram languages. Software, IET 2(3), 281–302 (2008)Google Scholar
  20. 20.
    Czarnecki, K., Kim, C.H.P., Kalleberg, K.T.: Feature models are views on ontologies. In: SPLC 2006, pp. 41–51. IEEE, Los Alamitos (2006)Google Scholar
  21. 21.
    Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated error analysis for the agilization of feature modeling. J. Syst. Softw. 81(6), 883–896 (2008)CrossRefGoogle Scholar
  22. 22.
    Batory, D., Benavides, D., Ruiz-Cortés, A.: Automated analysis of feature models: Challenges ahead. Communications of the ACM (December 2006)Google Scholar
  23. 23.
    White, J., Schmidt, D.C., Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated diagnosis of product-line configuration errors in feature models. In: SPLC 2008, pp. 225–234. IEEE, Los Alamitos (2008)Google Scholar
  24. 24.
    Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1-3), 217–239 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Taentzer, G.: AGG: A graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in alloy. In: Proceedings of First Alloy Workshop, pp. 71–80 (2006)Google Scholar
  27. 27.
    Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E., Georg, G.: Directives for composing aspect-oriented design class models. In: Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Fleurey, F., Baudry, B., France, R.B., Ghosh, S.: A generic approach for automatic model composition. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 7–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging of statecharts specifications. In: ICSE 2007, pp. 54–64. IEEE, Los Alamitos (2007)Google Scholar
  31. 31.
    Mens, T., Gorp, P.V., Varró, D., Karsai, G.: Applying a model transformation taxonomy to graph transformation technology, March 2006. Electronic Notes in Theoretical Computer Science, vol. 152, pp. 143–159 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mathieu Acher
    • 1
  • Philippe Collet
    • 1
  • Philippe Lahire
    • 1
  • Robert France
    • 2
  1. 1.I3S Laboratory (CNRS UMR 6070)University of Nice Sophia AntipolisFrance
  2. 2.Computer Science DepartmentColorado State UniversityUSA

Personalised recommendations