Advertisement

An Automated Approach to Transform Use Cases into Activity Diagrams

  • Tao Yue
  • Lionel C. Briand
  • Yvan Labiche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6138)

Abstract

Use cases are commonly used to structure and document requirements while UML activity diagrams are often used to visualize and formalize use cases, for example to support automated test case generation. Therefore the automated support for the transition from use cases to activity diagrams would provide significant, practical help. Additionally, traceability could be established through automated transformation, which could then be used for instance to relate requirements to design decisions and test cases. In this paper, we propose an approach to automatically generate activity diagrams from use cases while establishing traceability links. Data flow information can also be generated and added to these activity diagrams. Our approach is implemented in a tool, which we used to perform five case studies. The results show that high quality activity diagrams can be generated. Our analysis also shows that our approach outperforms existing academic approaches and commercial tools.

Keywords

Use Case Use Case Modeling UML Activity Diagram Transformation Traceability Automation Natural Language Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE Std. 830-1998, IEEE Standard for Software Requirement Specification (1998)Google Scholar
  2. 2.
    Berenbach, B., Inc, S.C.R., Princeton, N.J.: The evaluation of large, complex UML analysis and design models. ICSE (2004)Google Scholar
  3. 3.
    Bittner, K., Spence, I.: Use Case Modeling. Addison-Wesley, Boston (2002)Google Scholar
  4. 4.
    Brown, E.K., Miller, J.E.: Syntax: a linguistic introduction to sentence structure. Routledge (1992)Google Scholar
  5. 5.
    Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering Using UML, Patterns, and Java. Prentice-Hall, Englewood Cliffs (2009)Google Scholar
  6. 6.
  7. 7.
    Chen, T.Y., Tang, S.F., Poon, P.L., Tse, T.H.: Identification of categories and choices in activity diagrams. In: QSIC 2005, Citeseer, pp. 55-63 (2005)Google Scholar
  8. 8.
    Eclipse Foundation: Eclipse Modeling FrameworkGoogle Scholar
  9. 9.
    Fliedl, G., Kop, C., Mayr, H.C., Salbrechter, A., Vöhringer, J., Weber, G., Winkler, C.: Deriving static and dynamic concepts from software requirements using sophisticated tagging. Data Knowl. Eng. 61, 433–448 (2007)CrossRefGoogle Scholar
  10. 10.
    Fowler, M.: UML distilled: a brief guide to the standard object modeling language. Addison-Wesley, Reading (2003)Google Scholar
  11. 11.
    Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-Wesley, Reading (2000)Google Scholar
  12. 12.
    Gutiérrez, J.J., Clémentine, N., Escalona, M.J., Mejías, M., Ramos, I.M.: Visualization of Use Cases through Automatically Generated Activity Diagrams. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 83–96. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Ilieva, M.G., Ormandjieva, O.: Models Derived from Automatically Analyzed Textual User Requirements. Soft. Eng. Research, Management and Applications (2006)Google Scholar
  14. 14.
    Kermeta: Kermeta metaprogramming environment. Triskell teamGoogle Scholar
  15. 15.
    Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Reading (2003)Google Scholar
  16. 16.
    Mustafiz, S., Kienzle, J., Vangheluwe, H.: Model transformation of dependability-focused requirements models. In: ICSE Workshop on Modeling in Software Engineering (2009)Google Scholar
  17. 17.
    Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.M.: Automatic test generation: A use case driven approach. IEEE TSE 32, 140–155 (2006)Google Scholar
  18. 18.
    Olsen, G.K., Oldevik, J.: Scenarios of traceability in model to text transformations. ECMDA-FA. Haifa, Israel (2007)Google Scholar
  19. 19.
    OMG: UML 2.2 Superstructure SpecificationGoogle Scholar
  20. 20.
  21. 21.
    The Stanford Natural Language Processing Group. The Stanford Parser version 1.6Google Scholar
  22. 22.
  23. 23.
    Waheed, T., Iqbal, M.Z.Z., Malik, Z.I.: Data Flow Analysis of UML Action Semantics for Executable Models. ECMDA-FA (2008)Google Scholar
  24. 24.
    Yue, T., Briand, L.C., Labiche, Y.: A Use Case Modeling Approach to Facilitate the Transition Towards Analysis Models: Concepts and Empirical Evaluation. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 484–498. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Yue, T., Briand, L.C., Labiche, Y.: Automatically Deriving a UML Analysis Model from a Use Case Model. Carleton University (2009)Google Scholar
  26. 26.
    Yue, T., Briand, L.C., Labiche, Y.: A Systematic Review of Transformation Methodologies between User Requirements and Analysis Models. Carleton University (2009)Google Scholar
  27. 27.
    Yue, T., Briand, L.C., Labiche, Y.: An Automated Approach to Transform Use Cases into Activity Diagrams. Carleton University, Technical report SCE-10-01 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tao Yue
    • 1
    • 2
  • Lionel C. Briand
    • 2
  • Yvan Labiche
    • 1
  1. 1.Software Quality Engineering LabCarleton UniversityOttawaCanada
  2. 2.Simula Research LaboratoryUniversity of OsloLysakerNorway

Personalised recommendations