This survey provides a comparative overview of code-based signature schemes with respect to security and performance. Furthermore, we explicitly describe serveral code-based signature schemes with additional properties such as identity-based, threshold ring and blind signatures.


post-quantum cryptography coding-based cryptography digital signatures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alabbadi, M., Wicker, S.B.: Digital signature scheme based on error–correcting codes. In: Proc. of 1993 IEEE International Symposium on Information Theory, pp. 19–29. Press (1993)Google Scholar
  2. 2.
    Barg, S.: Some New NP-Complete Coding Problems. Probl. Peredachi Inf. 30, 23–28 (1994)MathSciNetGoogle Scholar
  3. 3.
    Bellare, M., Chanathip, N., Gregory, N.: Security Proofs for Identity-Based Identification and Signature Schemes. J. Cryptol. 22(1), 1–61 (2008)CrossRefGoogle Scholar
  4. 4.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. Cryptology ePrint Archive, Report 2008/318 (2008),
  6. 6.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing, pp. 213–229. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures and Applications to Ad-hoc Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Buchmann, J., Lindner, R., Ruckert, M., Schneider, M.: Post-Quantum Cryptography: Lattice Signatures (2009)Google Scholar
  9. 9.
    Cayrel, P.-L., Gaborit, P., Galindo, D., Girault, M.: Improved identity-based identification using correcting codes. CoRR, abs/0903.0069 (2009)Google Scholar
  10. 10.
    Cayrel, P.-L., Gaborit, P., Girault, M.: Identity-based identification and signature schemes using correcting codes. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) WCC 2007, pp. 69–78 (2007)Google Scholar
  11. 11.
    Cayrel, P.-L., Gaborit, P., Prouff, E.: Secure Implementation of the Stern Authentication and Signature Schemes for Low-Resource Devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 191–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Cayrel, P.L., Otmani, A., Vergnaud, D.: On Kabatianskii-Krouk-Smeets Signatures. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 237–251. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO, pp. 199–203 (1982)Google Scholar
  14. 14.
    Chaum, D., Fiat, A., Naor, M.: Untraceable Electronic Cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Courtois, N., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-based Digital Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Dallot, L.: Towards a Concrete Security Proof of Courtois, Finiasz and Sendrier Signature Scheme (2007),
  17. 17.
    Dallot, L., Vergnaud, D.: Provably Secure Code-Based Threshold Ring Signatures. In: Cryptography and Coding 2009: Proc. of the 12th IMA International Conference on Cryptography and Coding, pp. 222–235. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  19. 19.
    Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs dérreurs en cryptographie à clé publique. PhD thesis, INRIA - Ecole Polytechnique (2004)Google Scholar
  20. 20.
    Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-based Cryptosystems. To appear in Advances in Cryptology – Asiacrypt 2009 (2009),
  21. 21.
    Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In: IEEE International Symposium on Information Theory – ISIT 2007, Nice, France, pp. 191–195. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  22. 22.
    Galindo, D., Herranz, J., Kiltz, E.: On the Generic Construction of Identity-Based Signatures with Additional Properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
  24. 24.
    Harn, L., Wang, D.C.: Cryptoanalysis and modification of digital signature scheme based on error–correcting codes. Electronics Letters 28(2), 157–159 (1992)CrossRefGoogle Scholar
  25. 25.
    Kabatianskii, G., Krouk, E., Smeets, B.J.M.: A digital signature scheme based on random error-correcting codes. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Liu, J.K., Wei, V.K., Wong, D.S.: A Separable Threshold Ring Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16. North-Holland Mathematical Library, Amsterdam (1977)zbMATHGoogle Scholar
  28. 28.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jpl dsn progress report 42-44, pp. 114–116 (1978)Google Scholar
  29. 29.
    Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A New Efficient Threshold Ring Signature Scheme Based on Coding Theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Misoczki, R., Barreto, P.S.L.M.: Compact McEliece Keys from Goppa Codes. Preprint (2009),
  31. 31.
    Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  32. 32.
    Overbeck, R.: A Step Towards QC Blind Signatures. Cryptology ePrint Archive, Report 2009/102 (2009),
  33. 33.
    Pointcheval, D., Stern, J.: Provably Secure Blind Signature Schemes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  34. 34.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 552. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Mémoire d’habilitation à diriger des recherches, Université Paris 6 (March 2002)Google Scholar
  37. 37.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  38. 38.
    Shamir, A.: An efficient identification scheme based on permuted kernels. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg (1990)Google Scholar
  39. 39.
    Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Sci. Statist. Comput. 26, 1484 (1997)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair Blind Signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219. Springer, Heidelberg (1995)Google Scholar
  41. 41.
    Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)Google Scholar
  42. 42.
    Véron, P.: Improved Identification Schemes Based on Error-Correcting Codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)CrossRefGoogle Scholar
  43. 43.
    Wang, X.M.: Digital signature scheme based on error-correcting codes. Electronics Letters (13), 898–899 (1990)Google Scholar
  44. 44.
    Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-Code Construction of Ring Signature Schemes and a Threshold Setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg (2003)Google Scholar
  45. 45.
    Zheng, D., Li, X., Chen, K.: Code-based Ring Signature Scheme. I. J. Network Security 5(2), 154–157 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pierre-Louis Cayrel
    • 1
  • Mohammed Meziani
    • 1
  1. 1.CASED – Center for Advanced Security Research DarmstadtDarmstadtGermany

Personalised recommendations