Advertisement

Feature Level Fusion of Face and Palmprint Biometrics by Isomorphic Graph-Based Improved K-Medoids Partitioning

  • Dakshina Ranjan Kisku
  • Phalguni Gupta
  • Jamuna Kanta Sing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

This paper presents a feature level fusion approach which uses the improved K-medoids clustering algorithm and isomorphic graph for face and palmprint biometrics. Partitioning around medoids (PAM) algorithm is used to partition the set of n invariant feature points of the face and palmprint images into k clusters. By partitioning the face and palmprint images with scale invariant features SIFT points, a number of clusters is formed on both the images. Then on each cluster, an isomorphic graph is drawn. In the next step, the most probable pair of graphs is searched using iterative relaxation algorithm from all possible isomorphic graphs for a pair of corresponding face and palmprint images. Finally, graphs are fused by pairing the isomorphic graphs into augmented groups in terms of addition of invariant SIFT points and in terms of combining pair of keypoint descriptors by concatenation rule. Experimental results obtained from the extensive evaluation show that the proposed feature level fusion with the improved K-medoids partitioning algorithm increases the performance of the system with utmost level of accuracy.

Keywords

Biometrics Feature Level Fusion Face Palmprint Isomorphic Graph K-Medoids Partitioning Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross, A., Jain, A.K., Qian, J.Z.: Information Fusion in Biometrics. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 354–359. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Kisku, D.R., Gupta, P., Sing, J.K.: Feature Level Fusion of Biometric Cues: Human Identification with Doddington’s Caricature. In: International Conference on Security Technology, Communications in Computer and Information Sciences, pp. 157–164. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Rattani, A., Kisku, D.R., Bicego, M., Tistarelli, M.: Feature Level Fusion of Face and Fingerprint Biometrics. In: 1st IEEE International Conference on Biometrics, Theory, Applications and Systems, pp. 1–6 (2007)Google Scholar
  4. 4.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics 14(1), 4–20 (2004)Google Scholar
  6. 6.
    Yao, Y.-F., Jing, X.-Y., Wong, H.-S.: Face and Palmprint Feature Level Fusion for Single Sample Biometrics Recognition. Neurocomputing 70(7), 1582–1586 (2007)CrossRefGoogle Scholar
  7. 7.
    Ross, A., Govindarajan, R.: Feature Level Fusion using Hand and Face Biometrics. In: SPIE Conference on Biometric Technology for Human Identification II, pp. 196–204 (2005)Google Scholar
  8. 8.
    Fu, Y., Ma, Z., Qi, M., Li, J., Li, X., Lu, Y.: A Novel User-specific Face and Palmprint Feature Level Fusion. In: 2nd International Symposium on Intelligent Information Technology Application, pp. 296–300 (2008)Google Scholar
  9. 9.
    Yan, Y., Zhang, Y.-J.: Multimodal Biometrics Fusion using Correlation Filter Bank. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  10. 10.
    Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-based Complete Graph Topology. In: 5th IEEE International Workshop on Automatic Identification Advanced Technologies, pp. 63–68 (2007)Google Scholar
  11. 11.
    Jain, A.K., Feng, J.: Latent Palmprint Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(6), 1032–1047 (2009)CrossRefGoogle Scholar
  12. 12.
    Whitney, H.: Congruent Graphs and the Connectivity of Graphs. Am. J. Math. 54, 160–168 (1932)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zhang, O., Couloigner, I.: A New and Efficient K-Medoid Algorithm for Spatial Clustering. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 181–189. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Lowe, D.G.: Object Recognition from Local Scale-invariant Features. In: International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  15. 15.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, vol. 855. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  16. 16.
    Horiuchi, T.: Colorization Algorithm using Probabilistic Relaxation. Image and Vision Computing 22(3), 197–202 (2004)CrossRefGoogle Scholar
  17. 17.
    Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  18. 18.
    Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal verification using Palmprint and Hand Geometry Biometric. In: 4th International Conference on Audio- and Video-Based Biometric Authentication, pp. 668–675 (2003)Google Scholar
  19. 19.
    Kisku, D.R., Tistarelli, M., Sing, J.K., Gupta, P.: Face Recognition by Fusion of Local and Global Matching Scores using DS theory: An Evaluation with Uni-classifier and Multi-classifier Paradigm. In: IEEE Computer Vision and Pattern Recognition Workshop on Biometrics, pp. 60–65 (2009)Google Scholar
  20. 20.
    Ribarí, C.S., Fratríc, I.: A Biometric Identification System based on Eigenpalm and Eigenfinger Features. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1698–1709 (2005)CrossRefGoogle Scholar
  21. 21.
    Dubes, R., Jain, A.K.: Clustering Techniques: The User’s Dilemma. Pattern Recognition 8(4), 247–260 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dakshina Ranjan Kisku
    • 1
  • Phalguni Gupta
    • 2
  • Jamuna Kanta Sing
    • 3
  1. 1.Department of Computer Science and EngineeringDr. B. C. Roy Engineering CollegeDurgapurIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  3. 3.Department of Computer Science and engineeringJadavpur UniversityKolkataIndia

Personalised recommendations