Advertisement

SIMACT: A 3D Open Source Smart Home Simulator for Activity Recognition

  • Kevin Bouchard
  • Amir Ajroud
  • Bruno Bouchard
  • Abdenour Bouzouane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

Smart home technologies have become, in the last few years, a very active topic of research. However, many scientists working in this field do not possess smart home infrastructure allowing them to conduct satisfactory experiments in a concrete environment with real data. To address this issue, this paper presents a new flexible 3D smart home infrastructure simulator developed in Java specifically to help researchers working in the field of activity recognition. A set of pre-recorded scenarios, made with data extracted from clinical trials, will be included with the simulator in order to give a common foundation for testing activity recognition algorithms. The goal is to release the SIMACT simulator as an open source component that will benefit the whole smart home research community.

Keywords

Smart Home 3D Simulator Activity Recognition Assistance Real Case Scenarios Open source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouchard, B., Bouzouane, A., Giroux, S.: A Keyhole Plan Recognition Model for Alzheimer’s Patients: First Results. Journal of Applied Artificial Intelligence (AAI) 22(7), 623–658 (2007)CrossRefGoogle Scholar
  2. 2.
    Carberry, S.: Techniques for plan recognition. User Modeling and User-Adapted Interaction 11(1–2), 31–48 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelligence 49(1-3), 61–95 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Diamond, J.: A report on Alzheimer disease and current research. Technical report, Alzheimer Society of Canada, pp. 1–26 (2006)Google Scholar
  5. 5.
    Haigh, K., Kiff, L., Ho, G.: The Independent LifeStyle Assistant: Lessons Learned. Assistive Technology 18(1), 87–106 (2006)Google Scholar
  6. 6.
    Hoey, J., von Bertoldi, A., Poupart, P., Mihailidis, A.: Assisting persons with dementia during handwashing using a partially observable Markov decision process. In: Int. Conference on Vision Systems (ICVS 2007) (Best Paper award), pp. 89–99 (2007) Google Scholar
  7. 7.
    Krzyska, C.: Smart House Simulation Tool, Master thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2006) Google Scholar
  8. 8.
    Lazovik, E., den Dulk, A.C.T., Groote, M., Lazovik, A., Aiello, M.: Services inside the Smart Home: A Simulation and Visualization tool. In: Int. Conf. on Service Oriented Computing, ICSOC 2009 (2009) Google Scholar
  9. 9.
    Powell, M.: Java Monkey Engine, JME (2008), http://www.jmonkeyengine.com
  10. 10.
    Patterson, D.J., Kautz, H.A., Fox, D., Liao, L.: Pervasive computing in the home and community. In: Bardram, J.E., Mihailidis, A., Wan, D. (eds.) Pervasive Computing in Healthcare, pp. 79–103. CRC Press, Boca Raton (2007)Google Scholar
  11. 11.
    Park, J., Moon, M., Hwang, S., Yeom, K.: CASS: A Context-Aware Simulation System for Smart Home. In: 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007), pp. 461–467 (2007) Google Scholar
  12. 12.
    Pigot, H., Mayers, A., Giroux, S.: The intelligent habitat and everyday life activity support. In: 5th International Conference on Simulations in Biomedicine (2003)Google Scholar
  13. 13.
    Ramos, C., Augusto, J.C., Shapiro, D.: Ambient Intelligence: the Next Step for Artificial Intelligence. IEEE Intelligent Systems 23, 5–18 (2008)CrossRefGoogle Scholar
  14. 14.
    Refaat Nasr, M.: Open Source Software: The use of open source software and its impact on organizations. Master Thesis, Middlesex university, 129 pages (June 2007) Google Scholar
  15. 15.
    Roy, P., Bouchard, B., Bouzouane, A., Giroux, S.: Challenging issues of ambient activity recognition for cognitive assistance. In: Mastrogiovanni, F., Chong, N. (eds.) Ambient Intelligence and Smart Environments, pp. 1–25. IGI global (in press, 2010) Google Scholar
  16. 16.
    Tibben, H., West, G.: Learning User Preferences in an Anxious Home, Smart Homes and Beyond. In: Proc. of the 4th International Conference on Smart homes and health Telematics (ICOST 2006), Milwaukee, USA, December 10-13, pp. 188–195 (2006) Google Scholar
  17. 17.
    Schwartz, M.F., Segal, M., Veramonti, T., Ferraro, M., Buxbaum, L.J. (NAT) The Naturalistic Action Test: A standardised assessment for everyday action impairment. Neuropsychological Rehabilitation 12(4), 311–339 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kevin Bouchard
    • 1
  • Amir Ajroud
    • 1
  • Bruno Bouchard
    • 1
  • Abdenour Bouzouane
    • 1
  1. 1.LIARA LaboratoryUniversite du Quebec a Chicoutimi (UQAC)SaguenayCanada

Personalised recommendations