Advertisement

Video Copy Detection: Sequence Matching Using Hypothesis Test

  • Debabrata Dutta
  • Sanjoy Kumar Saha
  • Bhabatosh Chanda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

video copy detection is intended for verifying whether a video sequence is copied from another or not. Such techniques can be used for protecting the copyright. A content-based video detection system extracts signature of the video from its visual constituents. Signature of the test sequence is matched against the same of the sequences in the database. Deciding whether two sequences are similar enough even with the presence of distortion is a big challenge. In this work, we have focused on sequence matching. We have proposed a hypothesis test based scheme for comparing the similarity of two sequences. Experiments have been carried out to verify the capability of the concept and result seems satisfactory.

Keywords

Video Copy Detection Video Fingerprinting Sequence Matching Hypothesis Test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seo, J.S., Jin, M., Lee, S., Jang, D., Lee, S.J., Yoo, d.C.: Audio fingerprinting based on normalized spectral subband centroids. In: Proc. ICASSP, pp. 213–216 (2005)Google Scholar
  2. 2.
    Lee, S., Yoo, C.D.: Video fingerprinting based on centroids of gradient orientations. In: Proc. ICASSP, pp. 401–404 (2006)Google Scholar
  3. 3.
    Hampapur, A., Bolle, R.: Comparison of sequence matching techniques for video copy detection. In: Proc. Intl. Conf. on Multimedia and Expo., pp. 188–192 (2001)Google Scholar
  4. 4.
    Chang, E.Y., Wang, J.Z., Li, C., Wiederhold, G.: Rime: A replicated image detector for the world-wide-web. In: Proc. SPIE Multimedia Storage and Archiving Systems III, pp. 68–71 (1998)Google Scholar
  5. 5.
    Kim, C.: Ordinal measure of dct coefficients for image correspondence and its application to copy detection. In: Proc. for SPIE Storage and Retrieval for Media Databases, pp. 199–210 (2003)Google Scholar
  6. 6.
    Kim, C.: Content-based image copy detection. Signal Process. Image Comm. 18(3), 169–184 (2003)CrossRefGoogle Scholar
  7. 7.
    Mohan, R.: Video sequence matching. In: Proc. ICASSP, pp. 3697–3700 (2001)Google Scholar
  8. 8.
    Hampapur, A., Bolle, R.: Feature based indexing for media tracking. In: Proc. Intl. Conf. on Multimedia and Expo., pp. 67–70 (2000)Google Scholar
  9. 9.
    Cheung, S.C.S., Zakhor, A.: Efficient video similarity measurement with video signature. IEEE Trans. CSVT 13(1), 59–74 (2003)Google Scholar
  10. 10.
    Li, Y., Jin, L., Zhou, X.: Video matching using binary signature. In: Proc. Intl. Symp. on Intelligent Signal Processing and Comm. Systems, pp. 317–320 (2005)Google Scholar
  11. 11.
    Kim, C., Vasudev, B.: Spatiotemporal sequence matching for efficient video copy detection. IEEE Trans. on CSVT 15(1), 127–132 (2005)Google Scholar
  12. 12.
    Oostveen, J., Kalker, T., Haitsma, J.: Feature extraction and a database strategy for video fingerprinting. In: Chang, S.-K., Chen, Z., Lee, S.-Y. (eds.) VISUAL 2002. LNCS, vol. 2314, pp. 117–128. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Hua, X.S., Chen, X., Zhang, H.J.: Robust video signature based on ordinal measure. In: Proc. ICIP, pp. 685–688 (2004)Google Scholar
  14. 14.
    Lowe, D.G.: Object recognition from local scale invariant features. In: Proc. ICCV, pp. 1150–1157 (1999)Google Scholar
  15. 15.
    Joly, A., Buisson, O., Frelicot, C.: Content-based copy retrieval using distortion-based probabilistici similarity search. IEEE Trans. Multimedia 9(2), 293–306 (2007)CrossRefGoogle Scholar
  16. 16.
    Wu, X., Zhang, Y., Wu, Y., Guo, J., Li, J.: Invariat visual patterns for video copy detection. In: Proc. ICPR, pp. 1–4 (2008)Google Scholar
  17. 17.
    Chen, L., Stentiford, F.W.M.: Video sequence matching based on ordinal measurement. In: Technical Report No. 1, UCL Adastral (2006)Google Scholar
  18. 18.
    Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Trans. Multimedia 8(6), 1190–1208 (2006)CrossRefGoogle Scholar
  19. 19.
    Bhat, D.N., Nayar, S.K.: Ordinal measures for image correspondence. IEEE Trans. PAMI 20(4), 415–423 (1998)Google Scholar
  20. 20.
    Maani, E., Tsaftaris, S.A., Katsaggelos, A.K.: Local feature extraction for video copy detection. In: Proc. ICIP, pp. 1716–1719 (2008)Google Scholar
  21. 21.
    Yan, Y., Ooi, B.C., Zhou, A.: Continuous content-based copy detection over streaming videos. In: Proc. Intl. Conf. on Data Engg., pp. 853–862 (2008)Google Scholar
  22. 22.
    Naphade, M., Yeung, M., Yeo, B.: A novel scheme for fast and efficient video sequence matching using compact signatures. In: Proc. SPIE Conf. Storage and Retrieval for Media Databases, vol. 3972, pp. 564–572 (2000)Google Scholar
  23. 23.
    Chen, L., Chua, T.S.: A match and tiling approach to content-based video retrieval. In: Proc. Intl. Conf. on Multimedia and Expo. (2001)Google Scholar
  24. 24.
    Shen, H., Ooi, B.C., Zhou, X.: Towards effective indexing for very large video sequence database. In: Proc. SIGMOD, pp. 730–741 (2005)Google Scholar
  25. 25.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans. PAMI 19(5), 530–535 (1997)Google Scholar
  26. 26.
    Zhao, H.V., Wu, M., Wang, Z.J., Liu, K.J.R.: Forensic analysis of nonlinear collusion attacks for multimedia fingerprinting. IEEE Trans. IP 14(5), 646–661 (2005)Google Scholar
  27. 27.
    Jain, A.K., Vailaya, A., Xiong, W.: Query by clip. Multimedia System Journal 7(5), 369–384 (1999)CrossRefGoogle Scholar
  28. 28.
    Chang, S.F.S., Chen, W., Meng, H.J., Sundaram, H., Zhong, D.: Videoq: An automated content based video search system using visual cues. ACM Multimedia, 313–324 (1997)Google Scholar
  29. 29.
    Sze, K.W., Lam, K.M., Qiu, G.: A new keyframe representation for video segment retrieval. IEEE Trans. CSVT 15(9), 1148–1155 (2005)Google Scholar
  30. 30.
    Guil, N., Gonzalez-Linares, J.M., Cozar, J.R., Zapata, E.L.: A clustering technique for video copy detection. In: Proc. Iberian Conf. on Pattern Recog. and Image Analysis, pp. 451–458 (2007)Google Scholar
  31. 31.
    Wald, A., Wolfowitz, J.: On a test whether two samples are from the same population. Annals of Mathematical Statistics 11, 147–162 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the wald-wolfowitz and smirnov two-sample tests. The Annals of Statistics 7(4), 697–717 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mohanta, P.P., Saha, S.K., Chanda, B.: Detection of representative frames of a shot using multivariate wald-wolfowitz test. In: Proc. ICPR, Florida, USA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Debabrata Dutta
    • 1
  • Sanjoy Kumar Saha
    • 2
  • Bhabatosh Chanda
    • 3
  1. 1.Tirthapati InstitutionKolkataIndia
  2. 2.CSE DepartmentJadavpur UniversityKolkataIndia
  3. 3.ECS UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations