Advertisement

A Video Coding Technique Using Octagonal Motion Search and BTC-PF Method for Fast Reconstruction

  • Bibhas Chandra Dhara
  • Sanjoy Kumar Saha
  • Bhabatosh Chanda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

Video coding systems includes motion compensation, frequency transformation, quantization, and lossless or entropy coding. For applications like, video playback, the time complexity of the decoder is an important issue. Motion estimation (ME) is the most time constraint modules of video coding technique, and the frequency transformation/inverse transformation also consume a considerable amount of time. For real-time application, decoder has to be fast enough to reconstruct the frames from transmitted data; but the most time constraint module of the decoder is the inverse transformation. In this paper, a fast motion estimation algorithm is used and in residual frame coding purpose, a fast method based on block truncation coding with pattern fitting concept is employed. Proposed video coding method is a fast one with a good quality at the reasonable bit-rate, also the decoder is much faster.

Keywords

Video coding/decoding motion estimation octagonal search btc-pf coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ITU-T: Recommendation h.261- video codec for audiovisual services at p_64 kbits/s (1990)Google Scholar
  2. 2.
    Rec., I.T.: Joint video specification (itu-t rec. h.264 | iso/iec 14496-10 avc) joint committee draft, joint video team (jvt) of iso/iec mpeg and itu-t vceg, document jvt-g050r1.doc. (2003)Google Scholar
  3. 3.
    Ahn, T.G., Moon, Y.H., Kim, J.H.: Fast full search motion estimation based on multilevel successive elimination algorithm. IEEE Trans. Circuits and Syst. Video Technol. 14, 1265–1269 (2004)CrossRefGoogle Scholar
  4. 4.
    Bhaskaran, V., Konstantinides, K.: Image and Video Compression Standards: Algorithms and Architectures, 2nd edn. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Processing 9, 287–290 (2000)CrossRefGoogle Scholar
  6. 6.
    Zhu, C., Lin, X., Chau, L.P.: Hexagon-based search pattern for fast block motion estimation. IEEE Trans. Circuits and Syst. Video Technol. 12, 349–355 (2002)CrossRefGoogle Scholar
  7. 7.
    Jing, X., Pui, L.P.: An efficient three-step search algorithm for block motion estimation. IEEE Trans. Multimedia 6, 435–438 (2004)CrossRefGoogle Scholar
  8. 8.
    Zhu, C., Lin, X., Chau, L., Po, L.M.: Enhance hexagonal search for fast block motion estimation. IEEE Trans. Circuits and Syst. Video Technol. 14, 1210–1214 (2004)CrossRefGoogle Scholar
  9. 9.
    Khan, N.A., Masud, S., Ahmad, A.: A variable block size motion estimation algorithm for real-time h.264 video coding. Signal Processing: Image Communication 21, 306–315 (2006)CrossRefGoogle Scholar
  10. 10.
    Dhara, B.C., Chanda, B.: Block motion estimation using predicted partial octagonal search. In: Proc. VIE 2006, pp. 277–282 (2006)Google Scholar
  11. 11.
    Dhara, B.C., Chanda, B.: Block truncation coding using pattern fitting. Pattern Recognition 37(11), 2131–2139 (2004)CrossRefGoogle Scholar
  12. 12.
    Koga, T., Iinuma, K., Hirano, A., Iijima, Y., Ishiguro, T.: Motion compensated interframe coding for video conferencing. In: Proc. Nat. Telecommun. Conf., pp. G.5.3.1–G.5.3.5 (1981)Google Scholar
  13. 13.
    Li, R., Zeng, B., Liou, M.: A new three-step search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 4, 438–442 (1994)CrossRefGoogle Scholar
  14. 14.
    Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 6, 313–317 (1996)CrossRefGoogle Scholar
  15. 15.
    Dhara, B.C., Chanda, B.: Color image compression based on block truncation coding using pattern fitting principle. Pattern Recognition 40, 2408–2417 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Delp, E.J., Mitchell, O.R.: Image compression using block truncation coding. IEEE Trans. Commun. 27, 1335–1342 (1979)CrossRefGoogle Scholar
  17. 17.
    Salomon, D.: Data Compression: The Complete Reference. Springer, New York (2000)zbMATHGoogle Scholar
  18. 18.
    H.264/avc reference software, http://iphome.hhi.de/suehring/tml/
  19. 19.
    Malvar, H.S., Hallapuro, A., Harczewicz, M., Kerofsky, L.: Low-complexity transformation and quantization in h.264/avc. IEEE Trans. Circuits and Syst. Video Technol. 13, 598–603 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bibhas Chandra Dhara
    • 1
  • Sanjoy Kumar Saha
    • 2
  • Bhabatosh Chanda
    • 3
  1. 1.Department of Information TechnologyJadavpur University 
  2. 2.Department of Computer Science and EngineeringJadavpur University 
  3. 3.Electronics and Communication Sciences UnitIndian Statistical Institute 

Personalised recommendations