Advertisement

A Supervised Locality Preserving Projections Based Local Matching Algorithm for Face Recognition

  • Yingqi Lu
  • Cheng Lu
  • Miao Qi
  • Shuyan Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

In this paper, a novel local matching algorithm based on supervised locality preserving projections (LM-SLPP) is proposed for human face recognition. Unlike the holistic face recognition methods which operates directly on the whole face images and obtains a global face features, the proposed LM-SLPP operates on sub-patterns partitioned from the original whole face image and separately extracts corresponding local sub-features from them. In our method, the input face images are firstly divided into several sub-images. Then, the supervised locality preserving projections is applied on each sub-image set for feature extraction. At last, the nearest neighbor classifier combined with major voting is utilized to classify the new face images. The efficiency of the proposed algorithm is demonstrated by experiments on Yale and YaleB face databases. Experimental results show that LM-SLPP outperforms other holistic and sub-pattern based methods.

Keywords

Pattern recognition Face recognition Manifold learning Supervised locality preserving projections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cevikalp, H., Neamtu, M., Wikes, M., Barkana, A.: Discriminative Common Vectors for Face Recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(1), 4–13 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar
  3. 3.
    Zou, J., Ji, Q., Nagy, G.: A Comparative Study of Local Matching Approach for Face Recognition. IEEE Transactions on Image Processing 16(10), 2617–2628 (2007)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  5. 5.
    Belhumeur, P.N., Hepanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transaction on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  6. 6.
    Barlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Transaction on Neural Network 13(6), 1450–1464 (2002)CrossRefGoogle Scholar
  7. 7.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process, 556–562 (2000)Google Scholar
  8. 8.
    He, X., Yan, S., Hu, T., Niyogi, P., Zhang, H.: Face recognition using Laplacianfaces. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)CrossRefGoogle Scholar
  9. 9.
    Pentland, A., Moghaddam, B., Starner, T.: View-Based and Modular Eigenspaces for Face Recognition. In: CVPR 1994, pp. 84–91 (1994)Google Scholar
  10. 10.
    Gottumukkal, R., Asari, V.K.: An improved face recognition technique based on modular PCA approach. Pattern Recognition Letters 25, 429–436 (2004)CrossRefGoogle Scholar
  11. 11.
    Chen, S., Zhu, Y.: Subpattern-based principle component analysis. Pattern Recognition 37, 1081–1083 (2004)CrossRefGoogle Scholar
  12. 12.
    Tan, K., Chen, S.: Adaptively weighted sub-pattern PCA for face recognition. Neurocomputing 64, 505–511 (2005)CrossRefGoogle Scholar
  13. 13.
    Zheng, Z., Zhao, Z., Yang, Z.: Gabor Feature Based Face Recognition Using Supervised Locality Preserving Projection. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 644–653. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  16. 16.
    Lee, K.C., Ho, J., Kriegman, D.: Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. Pattern Anal. Mach. Intelligence 27(5), 684–698 (2005)CrossRefGoogle Scholar
  17. 17.
    Nanni, L., Maio, D.: Weighted Sub-Gabor for face recognition. Pattern Recognition Letters 28, 487–492 (2007)CrossRefGoogle Scholar
  18. 18.
    Zhu, Y.-L.: Sub-pattern non-negative matrix factorization based on random subspace for face recognition. In: International Conference on Wavelet Analysis and Pattern Recognition, pp. 1356–1360 (2007)Google Scholar
  19. 19.
    Xue, H., Zhu, Y., Chen, S.: Local ridge regression for face recognition. Neurocomputing 72, 1342–1346 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Zhang, B., Wang, S., Qi, M., Kong, J.: An adaptively weighted sub-pattern locality preserving projection for face recognition. J. Network Comput. Appl. (2010), doi:10.1016/j.jnca.2009.12.013Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yingqi Lu
    • 1
  • Cheng Lu
    • 1
  • Miao Qi
    • 2
  • Shuyan Wang
    • 2
  1. 1.School of Computer Science and TechnologyJilin UniversityChina
  2. 2.School of Computer Science and Information TechnologyNortheast Normal UniversityChina

Personalised recommendations