Advertisement

Maximized Posteriori Attributes Selection from Facial Salient Landmarks for Face Recognition

  • Phalguni Gupta
  • Dakshina Ranjan Kisku
  • Jamuna Kanta Sing
  • Massimo Tistarelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

This paper presents a robust and dynamic face recognition technique based on the extraction and matching of devised probabilistic graphs drawn on SIFT features related to independent face areas. The face matching strategy is based on matching individual salient facial graph characterized by SIFT features as connected to facial landmarks such as the eyes and the mouth. In order to reduce the face matching errors, the Dempster-Shafer decision theory is applied to fuse the individual matching scores obtained from each pair of salient facial features. The proposed algorithm is evaluated with the ORL and the IITK face databases. The experimental results demonstrate the effectiveness and potential of the proposed face recognition technique also in case of partially occluded faces.

Keywords

Face biometrics Graph matching SIFT features Dempster-Shafer decision theory Intra-modal fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shakhnarovich, G., Moghaddam, B.: Face Recognition in Subspaces. In: Li, S., Jain, A. (eds.) Handbook of Face Recognition, pp. 141–168. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Shakhnarovich, G., Fisher, J.W., Darrell, T.: Face Recognition from Long-term Observations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 851–865. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Wiskott, L., Fellous, J., Kruger, N., Malsburg, C.: Face recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 775–779 (1997)CrossRefGoogle Scholar
  4. 4.
    Zhang, G., Huang, X., Wang, S., Li, Y., Wu, X.: Boosting Local Binary Pattern (LBP)-Based Face Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Heusch, G., Rodriguez, Y., Marcel, S.: Local Binary Patterns as an Image Preprocessing for Face Authentication. In: IDIAP-RR 76, IDIAP (2005)Google Scholar
  6. 6.
    Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-based Complete Graph Topology. In: IEEE workshop on Automatic Identification Advanced Technologies, pp. 63–68 (2007)Google Scholar
  7. 7.
    Lowe, D.: Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Smeraldi, F., Capdevielle, N., Bigün, J.: Facial Features Detection by Saccadic Exploration of the Gabor Decomposition and Support Vector Machines. In: 11th Scandinavian Conference on Image Analysis, vol. 1, pp. 39–44 (1999)Google Scholar
  9. 9.
    Gourier, N., James, D.H., Crowley, L.: Estimating Face Orientation from Robust Detection of Salient Facial Structures. In: FG Net Workshop on Visual Observation of Deictic Gestures, pp. 1–9 (2004)Google Scholar
  10. 10.
    Bauer, M.: Approximation Algorithms and Decision-Making in the Dempster-Shafer Theory of Evidence—An Empirical Study. International Journal of Approximate Reasoning 17, 217–237 (1996)CrossRefGoogle Scholar
  11. 11.
    Samaria, F., Harter, A.: Parameterization of a Stochastic Model for Human Face Identification. In: IEEE Workshop on Applications of Computer Vision (1994)Google Scholar
  12. 12.
    Yaghi, H., Krim, H.: Probabilistic Graph Matching by Canonical Decomposition. In: IEEE International Conference on Image Processing, pp. 2368–2371 (2008)Google Scholar
  13. 13.
    Moghaddam, B., Pentland, A.: Face recognition using View-based and Modular Eigenspaces. In: SPIE Conf. on Automatic Systems for the Identification and Inspection of Humans. SPIE, vol. 2277, pp. 12–21 (1994)Google Scholar
  14. 14.
    Wiskott, L., Fellous, J.-M., Kruger, N., von der Malsburg, C.: Face recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)CrossRefGoogle Scholar
  15. 15.
    Maurer, T., von der Malsburg, C.: Linear Feature Transformations to Recognize Faces Rotated in Depth. In: International Conference on Artificial Neural Networks, pp. 353–358 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Phalguni Gupta
    • 1
  • Dakshina Ranjan Kisku
    • 2
  • Jamuna Kanta Sing
    • 3
  • Massimo Tistarelli
    • 4
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Computer Science and EngineeringDr. B. C. Roy Engineering College / Jadavpur UniversityDurgapurIndia
  3. 3.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  4. 4.Computer Vision Laboratory, DAPUniversity of SassariAlgheroItaly

Personalised recommendations