Advertisement

Mining Significant Least Association Rules Using Fast SLP-Growth Algorithm

  • Zailani Abdullah
  • Tutut Herawan
  • Mustafa Mat Deris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

Development of least association rules mining algorithms are very challenging in data mining. The complexity and excessive in computational cost are always become the main obstacles as compared to mining the frequent rules. Indeed, most of the previous studies still adopting the Apriori-like algorithms which are very time consuming. To address this issue, this paper proposes a scalable trie-based algorithm named SLP-Growth. This algorithm generates the significant patterns using interval support and determines its correlation. Experiments with the real datasets show that the SLP-algorithm can discover highly positive correlated and significant of least association. Indeed, it also outperforms the fast FP-Growth algorithm up to two times, thus verifying its efficiency.

Keywords

Least association rules Data mining Correlated 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Database Mining: A Performance Perspective. IEEE Transactions on Knowledge and Data Engineering 5(6), 914–925 (1993)CrossRefGoogle Scholar
  2. 2.
    Yun, H., Ha, D., Hwang, B., Ryu, K.H.: Mining Association Rules on Significant Rare Data Using Relative Support. The Journal of Systems and Software 67(3), 181–191 (2003)Google Scholar
  3. 3.
    Xiong, H., Shekhar, S., Tan, P.-N., Kumar, V.: Exploiting A Support-Based Upper Bond Pearson’s Correlation Coefficient For Efficiently Identifying Strongly Correlated Pairs. In: The Proceeding of ACM SIGKDD 2004 (2004)Google Scholar
  4. 4.
    Zhou, L., Yau, S.: Association Rule and Quantative Association Rule Mining Among Infrequent Items. In: The Proceeding of ACM SIGKDD 2007 (2007)Google Scholar
  5. 5.
    Ding, J.: Efficient Association Rule Mining Among Infrequent Items. Ph.D Thesis, University of Illinois, Chicago (2005)Google Scholar
  6. 6.
    Koh, Y.S., Rountree, N.: Finding sporadic rules using apriori-inverse. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 97–106. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Liu, B., Hsu, W., Ma, Y.: Mining Association Rules With Multiple Minimum Supports. SIGKDD Explorations (1999)Google Scholar
  8. 8.
    Brin, S., Motwani, R., Silverstein, C.: Beyond Market Basket: Generalizing ARs to Correlations. Special Interest Group on Management of Data (SIGMOD), 265–276 (1997)Google Scholar
  9. 9.
    Omniecinski, E.: Alternative Interest Measures For Mining Associations. IEEE Trans. Knowledge and Data Engineering 15, 57–69 (2003)CrossRefGoogle Scholar
  10. 10.
    Lee, Y.-K., Kim, W.-Y., Cai, Y.D., Han, J.: CoMine: Efficient Mining of Correlated Patterns. In: The Proceeding of ICDM 2003 (2003)Google Scholar
  11. 11.
    Han, J., Pei, H., Yin, Y.: Mining Frequent Patterns Without Candidate Generation. In: The Proceeding of SIGMOD 2000. ACM Press, New York (2000)Google Scholar
  12. 12.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)Google Scholar
  13. 13.
    Au, W.H., Chan, K.C.C.: Mining Fuzzy ARs In A Bank-Account Database. IEEE Transactions on Fuzzy Systems 11(2), 238–248 (2003)CrossRefGoogle Scholar
  14. 14.
    Aggrawal, C.C., Yu, P.S.: A New Framework For Item Set Generation. In: Proceedings of the ACMPODS Symposium on Principles of Database Systems, Seattle, Washington (1998)Google Scholar
  15. 15.
    Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: Parallel Fp-Growth For Query Recommendation. In: Proceedings of RecSys 2008, pp. 107–114 (2008)Google Scholar
  16. 16.
    Mustafa, M.D., Nabila, N.F., Evans, D.J., Saman, M.Y., Mamat, A.: Association rules on significant rare data using second support. International Journal of Computer Mathematics 83(1), 69–80 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zailani Abdullah
    • 1
  • Tutut Herawan
    • 2
  • Mustafa Mat Deris
    • 3
  1. 1.Department of Computer ScienceUniversiti Malaysia Terengganu 
  2. 2.Department of Mathematics EducationUniversitas Ahmad DahlanIndonesia
  3. 3.Faculty of Information Technology and MultimediaUniversiti Tun Hussein Onn Malaysia 

Personalised recommendations