Modified Structures of Viterbi Alogrithm for Forced-State Method in Concatenated Coding System of ISDB-T

  • Zhian Zheng
  • Yoshitomo Kaneda
  • Dang Hai Pham
  • Tomohisa Wada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)


Iterative decoding based on forced-state method is applied for improving the decoding performance for concatenated coding system. In the application targeted here, this iterative decoding method is proposed for channel decoding of Japan Terrestrial Digital TV (ISDB-T). Modified structure of Viterbi algorithm that operates on quantized data with regard to implementation of the iterative decoding is presented. In general, knowledge about the implementation of conventional Viterbi algorithm can be applied to the modified Viterbi algorithm. The computational kernel of the proposed structure is the path metric calculation and the trace back for Viterbi algorithm with forced-state method based on quantized data.


ISDB-T Concatenated coding Convolutional codes Reed-Solomon codes Viterbi algortihm BM algorithm forced-state decoding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISDB-T: Terrestrial Television Digital Broadcasting Transmission. ARIB STD-B31 (1998)Google Scholar
  2. 2.
    Francis, M., Green, R.: Forward Error Correction in Digital Television Broadcast Systems (2008),
  3. 3.
    Viterbi, A.J.: Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)zbMATHCrossRefGoogle Scholar
  4. 4.
    Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1960)Google Scholar
  5. 5.
    Lamarca, M., Sala, J., Martinez, A.: Iterative Decoding Algorithms for RS-Convolutional Concatenated Codes. In: Proc. 3rd International Symposium on Turbo Codes & Related Topics, Brest, France (2003)Google Scholar
  6. 6.
    Lee, L.-N.: Concatenated Coding Systems Employing a Unit-Memory Convolutional Code and a Byte-Oriented Decoding Algorithm. IEEE Transactions on Communications 25(10), 1064–1074 (1977)zbMATHCrossRefGoogle Scholar
  7. 7.
    Paaske, E.: Improved Decoding for a Concatenated Coding System Recommended by CCSDS. IEEE Transactions on Communications 38(8), 1138–1144 (1990)CrossRefGoogle Scholar
  8. 8.
    Hekstra, A.P.: An Alternative to Metric Rescaling in Viterbi Decoders. IEEE Transactions on Communications 37(11), 1220–1222 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Heller, J.A., Jacobs, I.M.: Viterbi Decoding for Satellite and Space Communication. IEEE Transactions on Communication Technology 19(5), 835–848 (1971)CrossRefGoogle Scholar
  10. 10.
    McEliece, R., Swanson, L.: On the Decoder Error Probability for Reed-Solomon Codes. IEEE Transactions on Information Theory 32(5), 701–703 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cheng, K.-M.: More on the Decoder Error Probability for Reed-Solomon Codes. IEEE Transactions on Information Theory 35(4), 895–900 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhian Zheng
    • 1
  • Yoshitomo Kaneda
    • 2
  • Dang Hai Pham
    • 3
  • Tomohisa Wada
    • 1
    • 2
  1. 1.Information Engineering Department, Graduate School of Engineering and ScienceUniversity of the RyukyusOkinawaJapan
  2. 2.Magna Design Net, IncOkinawaJapan
  3. 3.Faculty of Electronics and TelecommunicationsHonoi Universtiy of TechnologyHanoiVietnam

Personalised recommendations