This publication presents a new technique for splitting secret information based on mathematical linguistics methods and allowing sequences of one or several bits to be coded in the way used in DNA cryptography. This solution represents a novel approach allowing DNA substitutions to be generalised and bit blocks of any length to be coded. Apart from extending the capability of coding in DNA cryptography, the technique presented will also make it possible to develop a new type of a hierarchical secret splitting scheme. Such schemes can be employed when developing new types of cryptographic protocols designed for the intelligent splitting and sharing of secrets.


DNA-cryptography secret sharing protocols mathematical linguistics information coding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular Computation of Solutions to Combinational Problems. Science, 266 (1994)Google Scholar
  2. 2.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Constructions and bounds for visual cryptography. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 416–428. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Transactions on Information Theory 40, 786–794 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blakley, G.R.: Safeguarding Cryptographic Keys. In: Proceedings of the National Computer Conference, pp. 313–317 (1979)Google Scholar
  5. 5.
    Charnes, C., Pieprzyk, J.: Generalised cumulative arrays and their application to secret sharing schemes. Australian Computer Science Communications 17, 61–65 (1995)Google Scholar
  6. 6.
    Chomsky, N.: Syntactic structures. Mouton & Co., Netherlands (1957)Google Scholar
  7. 7.
    Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Hang, N., Zhao, W.: Privacy-preserving data mining Systems. Computer 40, 52–58 (2007)Google Scholar
  9. 9.
    Jackson, W.-A., Martin, K.M., O’Keefe, C.M.: Ideal secret sharing schemes with multiple secrets. Journal of Cryptology 9, 233–250 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ogiela, M.R., Tadeusiewicz, R.: Modern Computational Intelligence Methods for the Interpretation of Medical Images. Springer, Heidelberg (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ogiela, M.R., Ogiela, U.: Linguistic Cryptographic Threshold Schemes. International Journal of Future Generation Communication and Networking 1(2), 33–40 (2009)Google Scholar
  12. 12.
    Shamir, A.: How to Share a Secret. Communications of the ACM, 612–613 (1979)Google Scholar
  13. 13.
    Simmons, G.J.: An Introduction to Shared Secret and/or Shared Control Schemes and Their Application in Contemporary Cryptology. In: The Science of Information Integrity, pp. 441–497. IEEE Press, Los Alamitos (1992)Google Scholar
  14. 14.
    Tang, S.: Simple Secret Sharing and Threshold RSA Signature Schemes. Journal of Information and Computational Science 1, 259–262 (2004)Google Scholar
  15. 15.
    Wu, T.-C., He, W.-H.: A geometric approach for sharing secrets. Computers and Security 14, 135–146 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marek R. Ogiela
    • 1
  • Urszula Ogiela
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations