Advertisement

Applications of Adaptive Belief Propagation Decoding for Long Reed-Solomon Codes

  • Zhian Zheng
  • Dang Hai Pham
  • Tomohisa Wada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6059)

Abstract

Reed-Solomon (204,188) code has been widely used in many digital multimedia broadcasting systems. This paper focuses on the low complexity derivation of adaptive belief propagation bit-level soft decision decoding for this code. Simulation results demonstrate that proposed normalized min-sum algorithm as belief propagation (BP) process provides the same decoding performance in terms of packet-error-rate as sum-product algorithm. An outer adaptation scheme by moving adaptation process of parity check matrix out of the BP iteration loop is also introduced to reduce decoding complexity. Simulation results show that the proposed two schemes perform a good trade-off between the decoding performance and decoding complexity.

Keywords

Reed-Solomon codes Adaptive belief propagation Sum-Product algorithm Min-sum algorithm Bit-level parity check matrix Gaussian elimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reed, I.S., Solomon, G.: Polynomial Codes over Certain Finite Fields. Journal of Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    ETSI TS 102 427 V1.1.1: Digital Audio Broadcasting (DAB); Data Broadcasting – MPEG-2 TS Streaming (2005)Google Scholar
  3. 3.
    ETSI EN 300 429 V1.2.1: Digital Video Broadcasting (DVB); Framing structure, Channel Coding and Modulation for Cable Systems (1998) Google Scholar
  4. 4.
    ETSI EN 300 744 V1.5.1: Digital Video Broadcasting (DVB); Framing Structure, Channel Coding, and Modulation for Digital Terrestrial Television (2004) Google Scholar
  5. 5.
    ISDB-T: Terrestrial Television Digital Broadcasting Transmission. ARIB STD-B31 (1998) Google Scholar
  6. 6.
    Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1960)Google Scholar
  7. 7.
    Jiang, J., Narayanan, K.R.: Iterative Soft-Input-Soft-Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix. IEEE Transaction on Information Theory 52(8), 3746–3756 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Lin, S., Costello, D.J.: Error Control Coding: Fundamentals and Applications. Prentice Hall, New Jersey (1983)Google Scholar
  9. 9.
    Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor Graphs and the Sum-product Algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, J.H., Dholakia, A., Eleftheriou, E., Fossorier, M.P.C., Hu, X.Y.: Reduced-Complexity Decoding of LDPC Codes. IEEE Transactions on Communications 53(8), 1288–1299 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhian Zheng
    • 1
  • Dang Hai Pham
    • 2
  • Tomohisa Wada
    • 1
  1. 1.Information Engineering Department, Graduate School of Engineering and ScienceUniversity of the RyukyusOkinawaJapan
  2. 2.Faculty of Electronics and TelecommunicationsHonoi Universtiy of TechnologyHanoiVietnam

Personalised recommendations