Advertisement

Standard experiments of atmospheric general circulation models

  • Masaki Satoh
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Atmospheric general circulation models were originally developed for such practical applications as weather forecasts and climate prediction. They can also be used to investigate the basic properties of atmospheric circulations by performing numerical experiments under suitable conditions. This kind of usage is similar to certain kinds of laboratory experiments: baroclinic disturbances can be studied using a rotating annulus by changing the temperature difference between inner and outer annuli or rotation speed; and various aspects of atmospheric general circulation can also be examined using atmospheric general circulation models by artificially changing their governing parameters.

Keywords

Zonal Wind Diabatic Heating Extratropical Cyclone Standard Experiment Atmospheric Model Intercomparison Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggested reading

  1. Blackburn, M. and Hoskins, B. J., 2012: Context and aims of the Aqua Planet Experiment. J. Meteor. Soc. Japan, 91A, in press, doi: 10.2151/jmsj.2013- A01.
  2. Boer, G. J. and Denis, B., 1997: Numerical convergence of the dynamics of a GCM. Climate Dynamics, 13, 359–374.CrossRefGoogle Scholar
  3. Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. Bull. Am.Meteorol. Soc., 73, 1962–1970.CrossRefGoogle Scholar
  4. Hayashi, Y.-Y. and Sumi, A., 1986: The 30–40 day oscillations simulated in an aqua-planet model. J. Meteorol. Soc. Japan, 64, 451–467.Google Scholar
  5. Held, I.M. and Suarez, M. J., 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull.Am. Meteorol. Soc., 75, 1825–1830.CrossRefGoogle Scholar
  6. Iga, S., Tomita, H., Satoh, M., and Goto, K., 2007: Mountain-wave-like spurious waves associated with simulated cold fronts due to inconsistencies between horizontal and vertical resolutions. Mon. Wea. Rev., 135, 2629-2641.CrossRefGoogle Scholar
  7. Jablonowski, C. and Williamson, D. L., 2006: A baroclinic instability test case for atmospheric model dynamical cores. Q. J. R. Meteorol. Soc., 132, 2943-2975.CrossRefGoogle Scholar
  8. Neale, R. B. and Hoskins, B. J., 2001a: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmospheric Science Letters, 1, doi: 10.1006/asle.2000.0019.
  9. Neale, R. B. and Hoskins, B. J., 2001b: A standard test for AGCMs including their physical parameterizations. II: Results for the Met Office Model. Atmospheric Science Letters, 1, doi: 10.1006/asle.2000.0020.Google Scholar
  10. Ohfuchi, W., Nakamura, H., Yoshioka, M., K. Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K., 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator – Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 8–34.Google Scholar
  11. Phillips, T. J., 1996: Documentation of the AMIP models on the World Wide Web. Bull.Am. Meteorol. Soc., 77, 1191–1196.CrossRefGoogle Scholar
  12. Polvani, L.M., Scott, R. K., and Thomas, S. J., 2004: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon.Wea.Rev., 132, 2539-2552.CrossRefGoogle Scholar
  13. Simmons, A. J. and Hoskins, B. J., 1978: The life cycles of some nonlinear baroclinic waves. J.Atmos. Sci., 35, 414–432.CrossRefGoogle Scholar
  14. Thorncroft, C.D., Hoskins, B. J., and McIntyre, M.E., 1993: Two paradigms of baroclinic-wave life-cycle behavior. Q. J.Roy. Meteorol. Soc., 119, 17–55.CrossRefGoogle Scholar
  15. Tomita, H., Satoh, M., and Goto, K., 2003: Development of a nonhydrostatic general circulation model using an icosahedral grid. In: K.Matsuno, A.Ecer, J. Periaux, N. Satofuka, and P. Fox (eds.), Parallel Computational Fluid Dynamics. Elsevier Science, pp. 115–123.Google Scholar
  16. Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N., 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J.Comp. Phys., 102, 211–224.CrossRefGoogle Scholar
  17. Williamson, L., Blackburn, M., Hoskins, B. J., Nakajima, K., Ohfuchi, W., Takahashi, Y. O., Hayashi, Y.-Y., Nakamura, H., Ishiwatari, M., McGregor, J. L., Borth, H.,, Wirth, V., Frank, H., Bechtold, P., Wedi, N.P., Tomita, H., Satoh, M., Zhao, M., Held, I. M., Suarez, M. J., Lee, M.-I., Watanabe, M., Kimoto, M., Liu, Y., Wang, Z., Molod, A., Rajendran, K., Kitoh, A., and Stratton, R., 2012: The APE Atlas. Tech. Rep. NCAR/TN-484+STR, National Center for Atmospheric Research. http://library.ucar.edu/collections/technotes.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masaki Satoh
    • 1
  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations