Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 2218 Accesses

Abstract

This chapter describes a global atmospheric model for very high resolution simulations to explicitly calculate deep convective circulations, which play key roles not only in tropical circulations but in global circulations of the atmosphere. Since the horizontal scale of upward cores of deep convection is about a few kilometers, they cannot be directly resolved by hydrostatic atmospheric general circulation models. In order to drastically enhance horizontal resolution, a new framework for global atmospheric models is required. Around a resolution with a mesh size of the orders of a few kilometers, we need to use a nonhydrostatic dynamical core instead of the hydrostatic models described in Chapters 20–23. In general, as horizontal resolution increases, grid methods become more computationally efficient than spectral methods. As preparations for this chapter, therefore, we described a nonhydrostatic scheme in Chapter 24 and icosahedral grids in Chapter 25 as a typical emaple of grid discretization method over a sphere. This chapter combinei the numerical techniques described in the previous two chapters to introduce a global nonhydrostatic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggested reading

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Clim., 17, 2493–2525.

    Article  Google Scholar 

  • Arakawa, A. and Moorthi, S., 1988: Baroclinic instability in vertically discrete system. J. Atmos. Sci., 45, 1688–1707.

    Article  Google Scholar 

  • Blackburn, M., Williamson, D. L, Nakajima, K., Ohfuchi, W., Takahashi, Y.O., Hayashi, Y.-Y., Nakamura, H., Ishiwatari, M., McGregor, J., Borth, H., Wirth, V., Frank, H., Bechtold, P., Wedi, N.P., Tomita, H., Satoh, M., Zhao,

    Google Scholar 

  • M., Held, I. M., Suarez, M. J., Lee, M.-I., Watanabe, M., Kimoto, M., Liu, Y., Wang, Z., Molod, A., Rajendran, K., Kitoh A., and Stratton R., 2012: The Aqua Planet Experiment (APE): Control SST Simulation. J. Meteor.

    Google Scholar 

  • Soc. Japan, 91A, in press, doi:10.2151/jmsj.2013-A02.

    Google Scholar 

  • Cheong, H.-B., 2006: A dynamical core with double Fourier series: comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299–1315.

    Article  Google Scholar 

  • Cˆot´e, J., Gravel, S., M´ethot, A., and Patoine, A., 1998: Themultiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 1373–1395.

    Google Scholar 

  • Cullen, M. J.P., Davies, T., Mawson, M. H., James, J. A., Coutler, S.C., and Malcolm, A., 1997: An overview of numerical methods for the next generation U. K. NWP and climate model. Numerical methods in Atmospheric and Oceanic Modelling. The Andrew J. Robert Memorial Volume. C. A. Lin et al Eds., NRC Research Press, 425–444.

    Google Scholar 

  • Davies, T., Cullen, M. J.P., Malcolm, A. J., Mawson, M.H., Staniforth, A., White, A.A., and Wood, N., 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759–1782.

    Article  Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front, Mon. Wea. Rev., 121, 1493–1513.

    Article  Google Scholar 

  • Fox-Rabinovitz, M. S., 1996: Computational dispersion properties of 3D staggered grids for a nonhydrostatic anelastic system. Mon. Wea. Rev., 124, 498–510.

    Article  Google Scholar 

  • Gal-Chen, T. and Somerville, C. J., 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17 209–228.

    Article  Google Scholar 

  • Grabowski, W.W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 3283–3298.

    Article  Google Scholar 

  • Grabowski, W.W., 1999: A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmos. Res., 52, 17–41.

    Article  Google Scholar 

  • Gross, E. S., Bonaventura, L., and Rosatti, G., 2002: Consistency with continuity in conservative advection schemes for free-surface models. Int. J. Numer. Meth. Fluids, 38, 307–327.

    Article  Google Scholar 

  • Hayashi, Y.-Y. and Sumi, A., 1986: The 30-40 day oscillations simulated in an aqua-planet model. J. Meteorol. Soc. Japan, 64, 451-467.

    Google Scholar 

  • Iga, S., Tomita, H., Satoh, M., and Goto, K., 2007: Mountain-wave-like spurious waves due to inconsistency of horizontal and vertical resolution associated with cold fronts. Mon. Wea. Rev. (2007), 135, 2629–2641.

    Article  Google Scholar 

  • Inoue, T., Satoh, M., Miura, H. and Mapes, B., 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model. J. Meteor. Soc. Japan, 86A, 1–15.

    Article  Google Scholar 

  • J¨ockel, P., von Kuhlmann, R., Lawrence, M. G., Steil, B., Brenninkmeijer, C.A.M., Crutzen, P. J., Rasch, P. J., and Eaton, B., 2001: On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-

    Google Scholar 

  • dimensional general circulation and chemistry transport models. Q. J. Roy. Meteor. Soc., 127, 1035–1052.

    Google Scholar 

  • Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteorologial Monograph, 32, American Meteorogical Society, 84 pp.

    Google Scholar 

  • Klemp, J. B. and Wilhelmson, R.B., 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Laprise, R., 2008: Regional climate modelling. J. Comp. Phys., 227, 641–3666. Lauritzen, P.H., Jablonowski, C., Taylor, M.A., and Nair, R.D, 2011: Numerical Techniques for Global Atmospheric Models, Springer, New York, 556 pp.

    Google Scholar 

  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307.

    Article  Google Scholar 

  • Lin, Y.-L., Farley, R.D., and Orville, H.D., 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Applied Meteorology, 22, 1065–1092.

    Article  Google Scholar 

  • Madden R.A. and Julian, P. R., 1971: Description of a 40-50 day oscillation in the Tropics. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Madden R.A. and Julian, P.R., 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., andWergen,W., 2002: The operational global icosahedral–hexagonal gridpoint model GME: description and high-resolution tests. Mon. Wea.

    Google Scholar 

  • Rev., 130, 319–338.

    Google Scholar 

  • Matsuno, T., Satoh, M., Tomita, H., Nasuno, T., Iga, S., Miura, H., Noda, A. T., Oouchi, K., Sato, T., Fudeyasu, H., and Yanase, W., 2011: Cloud-clusterresolving global atmosphere modeling. - A challenge for the new age of tropical meteorology. In The Global Monsoon System, Research and Forecast, 2nd Edition, edited by C.-P. Chang, Y. Ding, N.-C. Lau, R. H. Johnson, B. Wang, and T. Yasunari, World Scientific Pub Co Inc, pp.455-473.

    Google Scholar 

  • Mesinger, D., 2000: Numerical methods: The Arakawa approach, horizontal grid, global, and limited-area modeling. In General Circulation Model Development, edited by D. A. Randall. Academic Press, 373–419.

    Google Scholar 

  • Miura, H., Satoh, M., Nasuno, T., Noda, A.T., and Oouchi, K., 2007: A Madden- Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 1763–1765.

    Article  Google Scholar 

  • Mizuta, R., Oouchi, K., Yoshimura, H., Noda, A., Katayama, K., Yukimoto, S., Hosaka, M., Kusunoki, S., Kawai, H., and Nakagawa, M., 2005: 20km-mesh global climate simulations using JMA-GSM model -mean climate states-. J. Meteor. Soc. Japan, 84, 165–185.

    Article  Google Scholar 

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823–839.

    Google Scholar 

  • Nasuno, T., Tomita, H., Iga, S., Miura, H., and Satoh, M., 2007: Multi-scale organization of convection simulated with explicit cloud processes on an aqua planet. J. Atmos. Sci., 64, 1902–1921.

    Article  Google Scholar 

  • Neale R.B. and Hoskins, B. J., 2001: A standard test for AGCMs including their physical parameterizations: I: The proposal. Atmospheric Science Letter, 1, doi:10.1006/asle.2000.0019.

    Google Scholar 

  • Niwa,Y., Tomita,H., Satoh,M., and Imasu,R., 2011: A three-dimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport. J. Meteor. Soc. Japan, 89, 255–268.

    Article  Google Scholar 

  • Ohfuchi, W., Nakamura, H., Yoshioka, M. K. Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K., 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator – Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 8–34.

    Google Scholar 

  • Ooyama, K.V. 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58, 2073–2102.

    Article  Google Scholar 

  • Qian, J.-H., Semazzi, F.H.M., and Scroggs, J. S., 1998: A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 126, 747–771.

    Article  Google Scholar 

  • Randall, D.A., Heikes, R., and Ringler, T., 2000: Global atmospheric modeling using a geodesic grid with an isentropic vertical coordinate. In General Circulation Model Development, edited by D. A. Randall. Academic Press, 509–538.

    Google Scholar 

  • Ringler, T.D., Heikes, R.H., and Randall, D.A., 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 2471–2490.

    Article  Google Scholar 

  • Saito, K., Fujita, T., Yamada, Y., Ishida, J., Kumagai, K., Aranami, K., Ohmori, S., Nagasawa, R., Kumagai, S., Muroi, C., Kato, T., Eito, H., and Yamazaki, Y., 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 1266–1298.

    Article  Google Scholar 

  • Sato, T., Miura, H., Satoh, M., Takayabu, Y.N., and Wang, Y., 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Clim., 22, 4809–4826.

    Article  Google Scholar 

  • Satoh, M., 2002: Conservative scheme for the compressible non-hydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130, 1227–1245.

    Article  Google Scholar 

  • Satoh, M., 2003: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131, 1033–1050.

    Article  Google Scholar 

  • Satoh, M., Tomita, H., Miura, H., Iga, S., and Nasuno,T., 2005: Development of a global cloud resolving model - a multi-scale structure of tropical convections -. J. Earth Simulator, 3. 11–19.

    Google Scholar 

  • Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., and Iga, S., 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comp. Phys., 227, 3486–3514.

    Article  Google Scholar 

  • Semazzi, F.H.M., Qian, J.-H., and Scroggs, J. S., 1995: A global nonhydrostatic semi-Lagrangian atmospheric model without orography. Mon. Wea. Rev., 123, 2534–2550.

    Article  Google Scholar 

  • Skamarock, W. C. and Klemp, J.B., 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 2109–2127.

    Article  Google Scholar 

  • Skamarock,W. C., Klemp, J.B., Duda, M.G., Fowler, L.D., and Park, S.-H., 2012: A multi-scale nonhydrostatic atmospheric model using centroid vornoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., Margolin, L.G., and Wyszogrodzki, A., 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58, 349–364.

    Article  Google Scholar 

  • Staniforth, A., and Wood, N., 2008: Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J. Comp. Phys., 227, 3445–3464.

    Article  Google Scholar 

  • Staniforth, A., and Thuburn, J, 2012; Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc., 138, 1–26.

    Article  Google Scholar 

  • Stuhne, G.R. and Peltier, W. R.: 1996: Vortex erosion and amalgamation in a new model of large scale flow on the sphere. J. Comput. Phys., 128, 58–81.

    Article  Google Scholar 

  • Takayabu, Y. N., Iguchi, T., Kachi, M., Shibata, A., and Kanzawa, H., 1999: Abrupt termination of the 1997–98 El Ni˜no in response to a Madden-Julian oscillation. Nature, 402, 279–282.

    Article  Google Scholar 

  • Taylor, M., Tribbia, J., and Iskandarani, M., 1997: The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92–108.

    Article  Google Scholar 

  • Thuburn, J., Wood, N., and Staniforth, A., 2002: Normal modes of deep atmospheres. I: Spherical geometry, Q. J. Roy. Met. Soc., 128, 1771–1792.

    Google Scholar 

  • Thuburn, J. and Woollings, T. J., 2005: Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes. J. Comp. Phys., 203, 386–404.

    Article  Google Scholar 

  • Tomita, H., Tsugawa, M., Satoh, M., and Goto, K., 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comp. Phys., 174, 579–613.

    Article  Google Scholar 

  • Tomita, H., Satoh, M., and Goto, K., 2002: An optimization of icosahedral grid modified by spring dynamics. J. Comp. Phys., 183, 307–331.

    Article  Google Scholar 

  • Tomita, H. and Satoh, M., 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400.

    Article  Google Scholar 

  • Tomita, H., Miura, H., Iga, S., Nasuno, T., and Satoh, M., 2005: A global cloudresolving simulation: preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805.

    Article  Google Scholar 

  • Tomita, H., Goto, K., and Satoh, M., 2008: A new approach of atmospheric general circulation model – Global cloud resolving model NICAM and its computational performance –. SIAM J. Sci. Comput., 30, 2755–2776.

    Article  Google Scholar 

  • Wedi, N. P. and Smolarkiewicz, P. K., 2004: Extending Gal-Chen and Somerville terrain-following coordinate transformation on time dependent curvilinear boundaries, J. Comput. Phys., 193 1–20.

    Article  Google Scholar 

  • Wedi, N. P. and Smolarkiewicz, P. K., 2009: A framework for testing global nonhydrostatic models. Q. J. R. Meteorol. Soc., 135, 469–484.

    Article  Google Scholar 

  • Wicker, L. J. and Skamarock, W. C., 1998: Time-splitting scheme for the elastic equations incorporating second-order runge-Kutta time differencing. Mon. Wea. Rev., 126, 1992–1999.

    Article  Google Scholar 

  • Wicker L. J. and Skamarock,W.C., 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 2088–2097.

    Article  Google Scholar 

  • Xiao, F., Okazaki, T., and Satoh, M., 2003: An accurate semi-Lagrangian scheme for rain drop sedimentation. Mon. Wea. Rev., 131, 974–983.

    Article  Google Scholar 

  • Yeh, K.-S., Cˆot´e, J., Gravel, S., M´ethot, A., Patoine, A., Roch, M., and Staniforth, A., 2002: The CMC-MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 120, 329–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Satoh, M. (2014). Global nonhydrostatic models. In: Atmospheric Circulation Dynamics and General Circulation Models. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13574-3_26

Download citation

Publish with us

Policies and ethics